Sinkhorn Distributionally Robust Optimization

Jie Wang Georgia Institute of Technology

Analytics for X 2024 Conference

Collaborators

Rui Gao

The University of Texas at Austin Georgia Institute of Technology

Yao Xie

1. Introduction

Machine Learning [Goodfellow et al. 2015]

Input

Machine Learning [Beery et al. ECCV2018]

(A) Cow: 0.99, Pasture:
 0.99, Grass: 0.99, No Person:
 0.98, Mammal: 0.98

(B) No Person: 0.99, Water:
 0.98, Beach: 0.97, Outdoors:
 0.97, Seashore: 0.97

(C) No Person: 0.97, Mammal: 0.96, Water: 0.94, Beach: 0.94, Two: 0.94

Strategic Pricing in eCommerce

INFORMS (2023) INFORMS 2023 BSS Data Challenge Competition, <u>https://sites.google.com/view/dmdaworkshop2023/data-challenge</u> **Wang J** (2023) Reliable Offline Pricing in eCommerce Decision-Making: A Distributionally Robust Viewpoint, Finalist of Competition $_{6}$

- Historical data over 2.5 years
- Pricing for real-world eCommerce market (Blue Summit Supplies)
- Online, data-driven decision making
- Criteria: Live Testing
 Performance

Strategic Pricing in eCommerce

Side Information *X*

- Competitor's Price
- Spatial
- Temporal
- Weather
- Historical

Cons: Distribution Shift on (side information, customer demand, price)!

INFORMS (2023) INFORMS 2023 BSS Data Challenge Competition, https://sites.google.com/view/dmdaworkshop2023/data-challenge Wang J (2023) Reliable Offline Pricing in eCommerce Decision-Making: A Distributionally Robust Viewpoint, Finalist of Competition

Wang J, Gao R, Zha H. Reliable off-policy evaluation for reinforcement learning. Operations Research, 2024, 72(2): 699-716 8

• data-driven, non-parametric, free of distributional assumptions

- Probability support is *discrete* and *finite* [Pflug G et. al 2008, ...]
- 2.
- 3. $z \mapsto \ell(z; \theta) \lambda^* ||x z||^2$ is strongly concave [Sinha et. al 2018,]

Tractability of Wasserstein DRO $= \min_{\theta,\lambda \ge 0} \left\{ \lambda \rho + \mathbb{E}_{x \sim \mathbb{P}_n} \left[\sup_{\boldsymbol{\zeta}} \left\{ \ell(z;\theta) - \lambda \| x - z \|^2 \right\} \right] \right\}$ (Strong Dual Reformulation) **Moreau-Yoshida regularization**

Loss $\ell(z; \theta)$ is piecewise concave / generalized linear model [Esfahani PM et. al 2018, Shafieezade et al 2015, ...]

Moreau-Yoshida regularization

- Probability support is *discrete* and *finite* [Pflug G et. al 2008, ...]
- 2.
- 3. $z \mapsto \ell(z; \theta) \lambda^* ||x z||^2$ is strongly concave [Sinha et. al 2018,]

Cons: Wasserstein DRO is not necessarily tractable for general applications

Tractability of Wasserstein DRO $= \min_{\theta,\lambda \ge 0} \left\{ \lambda \rho + \mathbb{E}_{x \sim \mathbb{P}_n} \left[\sup_{\boldsymbol{\zeta}} \left\{ \ell(z;\theta) - \lambda \| x - z \|^2 \right\} \right] \right\}$ (Strong Dual Reformulation)

Loss $\ell(z; \theta)$ is piecewise concave / generalized linear model [Esfahani PM et. al 2018, Shafieezade et al 2015, ...]

Worst-case Distribution of Wasserstein DRO

- The worst-case distribution (LFD) \mathbb{P}^* for WDRO is discrete
- In general, difficult to compute the LFD, and not directly generalizable beyond training samples
- Desired: Continuous LFD, generalize to the unseen

(a) Histogram of Training Samples

Least Favorable Distributions for WDRO 0.7 FD for X 0.6 LFD for Y 0.5 0.4 -0.3 -0.2 0.1 0.0 0.39 0.74 -0.231.62 (b) LFD from WDRO

Worst-case Distribution of Wasserstein DRO

- The worst-case distribution (LFD) \mathbb{P}^* for WDRO is discrete
- In general, difficult to compute the LFD, and not directly generalizable beyond training samples
- Desired: Continuous LFD, generalize to the

unseen

(a) Histogram of Training Samples

Least Favorable Distributions for WDRO 0.7 LFD for X 0.6 LFD for Y 0.5 0.4 0.3 -0.2 0.1 0.0 0.74 -0.230.39 1.62 (b) LFD from WDRO

Worst-case Distribution of Wasserstein DRO

- The worst-case distribution (LFD) \mathbb{P}^* for WDRO is discrete
- In general, difficult to compute the LFD, and not directly generalizable beyond training samples
- Desired: Continuous LFD, generalize to the

(a) Histogram of Training Samples

Least Favorable Distributions for WDRO 0.7 LFD for X 0.6 LFD for Y 0.5 0.4 0.3 -0.2 0.1 0.0 0.39 0.74 -0.231.62 (b) LFD from WDRO

Sinkhorn Discrepancy $\mathcal{W}_{\epsilon}(\mathbb{P},\mathbb{Q}) = \inf_{\gamma \in \Gamma(\mathbb{P},\mathbb{Q})} \left\{ \mathbb{E}_{(x,y) \sim \gamma}[\|x-y\|^2] + \epsilon \mathbb{E}_{(x,y) \sim \gamma} \left[\log\left(\frac{\mathsf{d}\gamma(x,y)}{\mathsf{d}\gamma(x)\mathsf{d}y}\right) \right] \right\}$

- It does not satisfy the definition of "distance"
- Entropic regularization encourages moving each $x \in \text{supp } \mathbb{P}$ to whole space

Sinkhorn $\mathcal{W}_{\epsilon}(\mathbb{P}, \mathbb{Q}) = \inf_{\gamma \in \Gamma(\mathbb{P}, \mathbb{Q})} \left\{ \mathbb{E}_{(x, y) \sim \gamma} [\| x \|_{\gamma \in \Gamma(\mathbb{P}, \mathbb{Q})} \right\}$

Historical Review:

- Originally proposed by [Wilson' 62]
- Convergence of algorithm for the first time by [Sinkhorn' 64]
- Operation complexity analysis and practical application by [Cuturi' 13, ...]

Discrepancy
$$x - y\|^{2}] + \epsilon \mathbb{E}_{(x,y) \sim \gamma} \left[\log \left(\frac{\mathrm{d}\gamma(x,y)}{\mathrm{d}\gamma(x)\mathrm{d}y} \right) \right]$$

 $\mathcal{W}_{\epsilon}(\mathbb{P},\mathbb{Q}) =$

Empirical Distribution

Main Framework

 $\left\{\sup_{\mathbb{P}: \mathcal{W}_{\epsilon}(\mathbb{P}_{n},\mathbb{P})\leq\rho}\mathbb{E}_{z\sim\mathbb{P}}[\ell(z;\theta)]\right\}$

$$= \inf_{\gamma \in \Gamma(\mathbb{P},\mathbb{Q})} \left\{ \mathbb{E}_{(x,y) \sim \gamma} [\|x - y\|^2] + \epsilon \mathbb{E}_{(x,y) \sim \gamma} \left[\log \left(\frac{\mathsf{d}\gamma(x,y)}{\mathsf{d}\gamma(x)} \right) \right] \right\}$$

Worst-case distribution by Sinkhorn DRO

Comparison

Empirical Distribution

Worst-case distribution by KL DRO

Worst-case distribution by Sinkhorn DRO

Worst-case distribution by Wasserstein DRO

2. Strong Duality and Related Properties

Strong Dual Reformulation

$$\mathcal{P})]: \mathcal{W}_{\epsilon}(\mathbb{P}_n, \mathbb{P}) \leq \rho$$

$$\mathbb{P}_{n}\left[\lambda\epsilon\log\mathbb{E}_{z\sim\mathbf{N}(x,\epsilon\mathbf{I})}\left[e^{\ell(z;\theta)/(\lambda\epsilon)}\right]\right]$$

V_{dual} : One-dimensional convex minimization, conditional stochastic optimization

• Worst-case distribution supported on whole sample space, while W-DRO is discrete

Toy Example: Newsvendor

 $\min_{z \sim \mathbb{P}_{\text{true}}} [k\beta - u\min\{\beta, z\}],$

k = 5, u = 7

Toy Example: Newsvendor

 $\min_{z \sim \mathbb{P}_{\text{true}}} [k\beta - u\min\{\beta, z\}],$

 $in\{\beta, z\}], \quad k = 5, u = 7$

Comparison with Wasserstein DRO

Sti

$$\begin{aligned} \text{rong duality for Sinkhorn DRO:} \\ V_{\text{Primal}} &= \sup_{\mathbb{P}} \left\{ \mathbb{E}_{z \sim \mathbb{P}}[\ell(z;\theta)] : \ \mathcal{W}_{\epsilon}(\mathbb{P}_{n},\mathbb{P}) \leq \rho \right\} \\ V_{\text{Dual}} &= \inf_{\lambda \geq 0} \left\{ \lambda \bar{\rho} + \mathbb{E}_{x \sim \mathbb{P}_{n}} \left[\lambda \epsilon \log \mathbb{E}_{z \sim \mathbf{N}(x,\epsilon\mathbf{I})}[e^{\ell(z;\theta)/(\lambda \epsilon)}] \right] \right\} \end{aligned}$$

Comparison with Wasserstein DRO

Str

Fong duality for Sinkhorn DRO:

$$V_{\text{Primal}} = \sup_{\mathbb{P}} \left\{ \mathbb{E}_{z \sim \mathbb{P}}[\ell(z;\theta)] : \mathcal{W}_{\epsilon}(\mathbb{P}_{n},\mathbb{P}) \leq \rho \right\}$$

$$V_{\text{Dual}} = \inf_{\lambda \geq 0} \left\{ \lambda \bar{\rho} + \mathbb{E}_{x \sim \mathbb{P}_{n}} \left[\lambda \epsilon \log \mathbb{E}_{z \sim \mathbf{N}(x,\epsilon\mathbf{I})}[e^{\ell(z;\theta)/(\lambda\epsilon)}] \right] \right\}$$

Strong duality for Wasserstein DI $V_{\text{Primal}} = \sup_{\mathbb{P}} \left\{ \mathbb{E}_{z \sim \mathbb{P}} [\ell(z; \theta)] : \right\}$ $V_{\text{Dual}} = \inf_{\lambda \ge 0} \left\{ \lambda \rho + \mathbb{E}_{x \sim \mathbb{P}_n} \right[$

$$\operatorname{RO} (\epsilon = 0):$$
$$\mathcal{W}(\mathbb{P}_n, \mathbb{P}) \le \rho \bigg\}$$
$$\sup_{z_{22}} \left\{ \ell(z; \theta) - \lambda \|x - z\|^2 \right\} \bigg] \bigg\}$$

Comparison with Wasserstein DRO Strong duality for **Sinkhorn DRO**: : $\mathcal{W}_{\epsilon}(\mathbb{P}_n, \mathbb{P}) \leq \rho$ $\lambda \epsilon \log \mathbb{E}_{z \sim \mathbf{N}(x, \epsilon \mathbf{I})} [e^{\ell(z; \theta) / (\lambda \epsilon)}]$ Approximate Strong duality for **Wasserstein DRO** ($\epsilon = 0$): "sup" using $V_{\text{Primal}} = \sup_{\mathbb{P}} \left\{ \mathbb{E}_{z \sim \mathbb{P}}[\ell(z; \theta)] : \mathcal{W}(\mathbb{P}_n, \mathbb{P}) \leq \rho \right\}$ log-sum-exp $V_{\text{Dual}} = \inf_{\lambda \ge 0} \left\{ \lambda \rho + \mathbb{E}_{x \sim \mathbb{P}_n} \left[\sup_{z_{22}} \left\{ \ell(z; \theta) - \lambda \| x - z \|^2 \right\} \right] \right\}$

$$V_{\text{Primal}} = \sup_{\mathbb{P}} \left\{ \mathbb{E}_{z \sim \mathbb{P}} [\ell(z; \theta)] \right\}$$
$$V_{\text{Dual}} = \inf_{\lambda \ge 0} \left\{ \lambda \bar{\rho} + \mathbb{E}_{x \sim \mathbb{P}_n} \right\}$$

transportation plan $\gamma(x,z) = \mathbb{P}_n(x) \cdot \gamma_x(z)$

Comparison with KL-divergence DRO

= Worst-case Distribution

 $\mathbb{P}(z) = \frac{1}{n} \sum_{i=1}^{n} \gamma_{\hat{x}_i}(z)$

 $\mathbb{P}_n = \text{empirical}$ distribution

$$V_{\text{Primal}} = \begin{cases} \sup_{\gamma_x, \forall x} \mathbb{E}_{x \sim \mathbb{P}_n} \mathbb{I} \\ \text{s.t.} \quad \mathbb{E}_{x \sim \mathbb{P}_n} \end{cases}$$

1. When $\bar{\rho} = 0$, Sinkhorn DRO becomes SAA with kernel density estimation:

 $V_{\text{Primal}} = \mathbb{E}_{z \sim \mathbb{P}^0} [\ell(z; \theta)]$

2. When $\bar{\rho} > 0$, Sinkhorn DRO robustifies \mathbb{P}^0 in terms of KL-divergence.

KL-divergence DRO $\mathbb{E}_{z \sim \gamma_x}[\ell(z; \theta)]$

 $\left| \operatorname{KL}(\gamma_x \| \mathbf{N}(x, \epsilon \mathbf{I})) \right| \leq \bar{\rho}/\epsilon$

)],
$$\mathbb{P}^0 = \frac{1}{n} \sum_{i=1}^n \mathcal{N}(\hat{x}_i, \epsilon \mathbf{I})$$

3. Optimization Algorithms

Ideal formulation:

$\min_{\theta,\lambda\geq 0} \left\{ \lambda\bar{\rho} + \mathbb{E}_{x\sim\mathbb{P}_n} \left[\lambda\epsilon\log\mathbb{E}_{z\sim\mathbf{N}(x,\epsilon\mathbf{I})} \left[e^{\ell(z;\theta)/(\lambda\epsilon)} \right] \right] \right\}$

Ideal formulation:

$\min_{\theta,\lambda\geq 0} \left\{ \lambda\bar{\rho} + \mathbb{E}_{x\sim\mathbb{P}_n} \left[\lambda\epsilon\log\mathbb{E}_{z\sim\mathbf{N}(x,\epsilon\mathbf{I})} [e^{\ell(z;\theta)/(\lambda\epsilon)}] \right] \right\}$

"As long as you can sample from \mathbb{P}_n and $\mathbf{N}(x, \epsilon \mathbf{I})$, the problem is solved".

- A. Shapiro

Ideal formulation:

"" *(As long as you can sample from* \mathbb{P}_n *and* $\mathbb{N}(x, \epsilon \mathbf{I})$ *, the problem is solved".*

For each \hat{x}_i in \mathbb{P}_n , sample *m* i.i.d. samples $\{z_{i,j}\}_{j=1}^m$ from $\mathbf{N}(\hat{x}_i, \epsilon \mathbf{I})$

- A. Shapiro

Ideal formulation:

"" *(As long as you can sample from* \mathbb{P}_n *and* $\mathbb{N}(x, \epsilon \mathbf{I})$ *, the problem is solved".*

For each \hat{x}_i in \mathbb{P}_n , sample *m* i.i.d. samples $\{z_{i,j}\}_{j=1}^m$ from $\mathbf{N}(\hat{x}_i, \epsilon \mathbf{I})$

Cons: Sample complexity is sub-optimal, $O(\delta^{-3})$

- A. Shapiro

Stochastic Algorithm for Sinkhorn DRO

• Goal:

$\min_{\theta} \left\{ \mathbb{E}_{x \sim \mathbb{P}_n} \left[\lambda \epsilon \log \mathbb{E}_{z \sim \mathbf{N}(x, \epsilon \mathbf{I})} \left[e^{\ell(z; \theta) / (\lambda \epsilon)} \right] \right\}^{\triangleq} F(\theta)$

• Approximation Problem:

L-SGD: Fix a large $\ell \equiv L$

SGD with Random Sampling Estimator: Adaptively Choose *l*

Sample $x \sim \mathbb{P}_n$ and $\{z_j\}_{j \in [2^{\hat{L}}]} \sim \mathbf{N}(x, \epsilon \mathbf{I})$ **Generate Sample Estimate of** $- (\nabla F^{\hat{L}}(\theta) - \nabla F^{\hat{L}-1}(\theta))$ and $p_{\hat{L}}$ Update

Stochastic Algorithm for Sinkhorn DRO

1. This estimator is unbiased gradient estimator of F^L

$$\mathbb{E}_{\hat{L}} \quad \frac{1}{p_{\hat{L}}} (\nabla F^{\hat{L}}(\theta) - \nabla F^{\hat{L}-1}(\theta))$$

SGD with Random Sampling Estimator: Adaptively Choose l

$$\sum_{l=1}^{n} p_{\hat{L}} \cdot \left[\frac{1}{p_{\hat{L}}} (\nabla F^{\hat{L}}(\theta) - \nabla F^{\hat{L}-1}(\theta)) \right]$$

$$\left[\nabla F^{\hat{L}}(\theta) - \nabla F^{\hat{L}-1}(\theta)\right] = \nabla F^{\hat{L}}$$

Sample $x \sim \mathbb{P}_n$ and $\{z_j\}_{j\in[2^{\hat{L}}]} \sim \mathbf{N}(x,\epsilon\mathbf{I})$ **Generate Sample Estimate of** $- (\nabla F^{\hat{L}}(\theta) - \nabla F^{\hat{L}-1}(\theta))$ and $p_{\hat{L}}$ Update

Stochastic Algorithm for Sinkhorn DRO

- 1. This estimator is **unbiased** gradient estimator of F^L
- 2. This estimator has significantly lower cost
- 3. This estimator has sufficiently small variance, due to control variates variance reduction [Nelson, 1990]

SGD with Random Sampling Estimator: Adaptively Choose *l*

Complexity for Solving Sinkhorn DRO $\min_{\theta,\lambda\geq 0} \left\{ \lambda \bar{\rho} + \mathbb{E}_{x\sim\mathbb{P}_n} \left[\lambda \epsilon \log \mathbb{E}_{z\sim\mathbf{N}(x,\epsilon\mathbf{I})} [e^{\ell(z;\theta)/(\lambda\epsilon)}] \right] \right\}$

Algorithm	Naive Gradient Estimator		Random Sampling Estimator	
Loss $\ell(z, \cdot)$	Convex	Nonconvex Smooth	Convex	Nonconvex Smooth
Complexity	$\tilde{O}(\delta^{-3})$	$\tilde{O}(\delta^{-6})$	$\tilde{O}(\delta^{-2})$	$\tilde{O}(\delta^{-4})$

Algorithm	Naive Gradient Estimator		Random Samp	oling Estimator
Loss $\ell(z, \cdot)$	Convex	Nonconvex Smooth	Convex	Nonconvex Smooth
Complexity	$\tilde{O}(\delta^{-3})$	$\tilde{O}(\delta^{-6})$	$\tilde{O}(\delta^{-2})$	$\tilde{O}(\delta^{-4})$

General Optimization Results

- Goal: min $F(\theta)$, whereas unbiased gradient of $F(\theta)$ is not available!
- **Assumption**:
 - Gradient of approximation objective F^l is easy to obtain

•
$$|F^l(\theta) - F(\theta)| = O(2^{-l})$$

Examples: \bullet

Contextual Bilevel Optimization $F(\theta) \triangleq \mathbb{E}_{\xi} [f(\theta, y^*(\theta; \xi))]$ minimize where $y^*(\theta;\xi) \triangleq \operatorname{argmin}_{v} \mathbb{E}_{\eta \sim \mathbb{P}_{\eta \mid \xi}} [g(x,y;\eta,\xi)],$

Hu Y, Wang J, Xie Y, Krause A, Kuhn D (2023) Contextual stochastic bilevel optimization. NIPS'23

$\|\nabla F^{l}(\theta) - \nabla F(\theta)\|^{2} = O(2^{-l})$ or

Hu Y, Wang J, Chen X, He N (2024) Multi-level Monte-Carlo Gradient Methods for Stochastic Optimization with Biased Oracles. arXiv preprint

General Optimization Results

- Random Sampling Gradient • Goal: $\min F(A)$ wh • As **Estimator Achieves Optimal** Complexity on those examples! $||^2 = O(2^{-l})$ • Examples: **Contextual Bilevel Optimization**
- $F(\theta) \triangleq \mathbb{E}_{\xi} [f(\theta, y^*(\theta; \xi))]$ minimize $y^*(\theta;\xi) \triangleq \operatorname{argmin}_{v} \mathbb{E}_{\eta \sim \mathbb{P}_{n|\xi}}[g(x,y;\eta,\xi)], \quad \forall \xi$ where

Hu Y, Wang J, Xie Y, Krause A, Kuhn D (2023) Contextual stochastic bilevel optimization. NIPS'23

able!

Hu Y, Wang J, Chen X, He N (2024) Multi-level Monte-Carlo Gradient Methods for Stochastic Optimization with Biased Oracles. arXiv preprint

4. Numerical Study and Discussion

Extension

p-Wasserstein DRO Approximation

[Sinha, Namkoong, Volpi, Duchi, 2020]

$\mathcal{W}_p(\mathbb{P}, \mathbb{Q}) = \inf_{\gamma \in \Gamma(\mathbb{P}, \mathbb{Q})} \left\{ \left(\mathbb{E}_{(x, y) \sim \gamma} [\|x - y\|^p] \right)^{1/p} \right\}$

Easy to optimize for large choice of λ

Extension

p-Wasserstein DRO Approximation

[Sinha, Namkoong, Volpi, Duchi, 2020]

$$-\lambda \|z - x\|^p \Big\} \Big] \Big\}$$

Extension

Entropic Regularized *p*-Wasserstein DRO Approximation

[Wang, Gao, Xie, 2021] $\mathcal{S}_{p,\epsilon}(\mathbb{P},\mathbb{P}_n) = \inf_{\gamma \in \Gamma(\mathbb{P},\mathbb{P}_n)} \left\{ \mathbb{E}_{(x,y)\sim\gamma}[\|x-y\|^p] + \epsilon \mathbb{E}_{(x,y)\sim\gamma} \left| \log\left(\frac{\mathsf{d}\gamma(x,y)}{\mathsf{d}x\mathsf{d}\gamma(y)}\right) \right| \right\}$

arXiv:2109.11926

Extension

Entropic Regularized *p*-Wasserstein DRO Approximation

[Wang, Gao, Xie, 2021]

Wang J, Gao R, Xie Y (2024) Regularization for Adversarial Robust Learning. arXiv preprint

arXiv:2109.11926

Extension directly?

Entropic Regularized *p*-Wasserstein DRO Approximation

[Wang, Gao, Xie, 2021]

Wang J, Gao R, Xie Y (2024) Regularization for Adversarial Robust Learning. arXiv preprint

Numerical Results

 $\min_{x \in \mathbb{R}^d_+, \sum_i x_i = 1}$

$\mathbb{E}_{\mathbb{P}_{\text{True}}}[-\langle x,\xi\rangle] + \varrho \cdot \mathbb{P}_{\text{True}} - CVaR_{\alpha}(-\langle x,\xi\rangle)$

Numerical Results

 $\min_{x \in \mathbb{R}^d_+, \sum_i x_i = 1}$

$\mathbb{E}_{\mathbb{P}_{\text{True}}}[-\langle x,\xi\rangle] + \varrho \cdot \mathbb{P}_{\text{True}} - CVaR_{\alpha}(-\langle x,\xi\rangle)$

Numerical Results

 $\min_{B \in \mathbb{R}^{d \times C}} \mathbb{E}_{(x, \mathbf{y}) \sim \mathbb{P}_{\text{true}}} [h_B(x, \mathbf{y})], \quad h_B(x, \mathbf{y}) = -\mathbf{y}^{\mathsf{T}} B^{\mathsf{T}} x + \log(1^{\mathsf{T}} e^{B^{\mathsf{T}} x}).$

Error rate for tinyImageNet dataset (90000 training samples with dimension 512):

Computational time:

Dataset	SAA	KL-DRO
tinyImageNet	45.54	44.50

Numerical Results

1-WDRO 1-SDRO 2-WDRO 2-SDRO 347.16197.55325.25227.91

Conclusion

- Sinkhorn DRO is a great notion of DRO models:
 - 1. Absolutely continuous worst-case
- distribution thanks to entropic regularization;
 - 2. Scalable computation by first-order method;
 - 3. Connections with regularized machine

	Random Samp Estimator		
Loss $\ell(z, \cdot)$	Convex	Nonc Sm	
Comple xity	$\tilde{O}(\delta^{-2})$	Õ(

Related References

- Wang J, Gao R, Xie Y (2023) Sinkhorn distributionally robust optimization. arXiv preprint arXiv:2109.11926 [Major Revision at Operations Research]
- Wang J, Gao R, Xie Y (2024) Regularization for Adversarial Robust Learning. arXiv *preprint arXiv:2109.11926*
- Wang J, Gao R, Zha H. Reliable off-policy evaluation for reinforcement learning. Operations Research, 2024, 72(2): 699-716
- Hu Y, Wang J, Chen X, He N (2024) Multi-level Monte-Carlo Gradient Methods for Stochastic Optimization with Biased Oracles. arXiv preprint arXiv:2408.11084
- Wang J (2023) Reliable Offline Pricing in eCommerce Decision-Making: A Distributionally Robust Viewpoint, Finalist of INFORMS Pricing Competition
- Hu Y, Wang J, Xie Y, Krause A, Kuhn D (2023) Contextual stochastic bilevel optimization. Advances in Neural Information Processing Systems 36

