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Abstract—Network coding provides an efficient approach
for multi-hop communication. The message from the source
node is encoded into batches of coded packets, and intermediate
nodes perform recoding steps to transmit the message to the
destination node. Adaptive recoding optimizes the number of
recoded packets per batch to enhance network throughput,
accounting for fluctuations in packet loss. In this paper, we
propose an adaptive recoding scheme in burst-noise channels
with unknown channel parameters. We first provide uncertainty
quantification for channel parameters using historical data and
build a confidence set to cover true channel parameters with
high probability. Next, we obtain the optimal recoding policy
by solving a robust Markov decision process (MDP) problem,
where uncertain parameters belong to the confidence set. The
objective of the robust MDP is to optimize the worst-case
reward function by considering all possible problem parameters
from the confidence set. Experimental results demonstrate that
our proposed recoding strategy significantly enhances network
communication throughput with burst-noise channels.

I. INTRODUCTION

Large-scale network communication often traverses mul-
tiple communication channels, each of which can introduce
errors, particularly in scenarios like 5G IAB and IoT [1].
Although the traditional decode-and-forward scheme [2]
achieves the min-cut communication capacity of the network,
it incurs high computational and storage costs at intermediate
nodes. Instead, batched network coding has emerged as a com-
putationally and storage-efficient solution for multi-hop com-
munication [3–6], without depending on feedback or informa-
tion of the network topology. Some existing batched network
codes, such as batched sparse (BATS) codes [3, 7], are known
to achieve communication capacity with negligible gaps and
are suitable to be deployed in extreme communication envi-
ronments such as deep space [8, 9] and underwater [10–12].

A batched network code first encodes the message at
the source node into batches of coded packets. Intermediate
network nodes then perform re-encoding, or simply called

Jie Wang and Yao Xie are with the H. Milton Stewart School of Industrial
and Systems Engineering, Georgia Institute of Technology, Atlanta, USA.
Talha Bozkus and Urbashi Mitra are with the Ming Hsieh Department of
Electrical and Computer Engineering, University of Southern California,
Los Angeles, USA. J. Wang and Y. Xie are funded by an NSF CAREER
CCF-1650913, NSF DMS-2134037, CMMI-2015787, CMMI-2112533,
DMS-1938106, DMS-1830210, and the Coca-Cola Foundation. T. Bozkus
and U. Mitra are funded by NSF CCF-1817200, ARO W911NF1910269,
DOE DE-SC0021417, Swedish Research Council 2018-04359, NSF CCF-
2008927, NSF CCF-2200221, ONR 503400-78050, ONR N00014-15-1-
2550 and USC + Amazon Center on Secure and Trusted Machine Learning.

recoding, to generate further recoded packets based on
received packets. It is worth mentioning that the generation
of recoded packets is restricted within the same batch. All
received packets are decoded jointly at the destination node.
The simplest recoding scheme, called baseline recoding,
generates the same number of recoded packets regardless
of the information contained in the received batches, but
its network throughput may not be optimal in general [13].
Adaptive recoding is later proposed to determine the optimal
number of recoded packets per batch. By adapting to
fluctuations in the number of received packets, adaptive
recording enhances communication efficiency [14–21].
However, this technique relies on precise knowledge of each
communication link, which is difficult to obtain in practice
due to observational errors or precision limitations.

In this paper, we focus on the design of adaptive recoding
for communication with a special burst-noise channel, called
the Gilbert-Elliott (GE) channels in literature, and consider
the scenario where channel parameters are unavailable. Such
a channel model has good and bad states, representing high
and low transmission successful rates, respectively. Unlike the
classical independent packet loss channel that assumes each
transmission has independent transmission successful rate,
the burst-noise channel is a more suitable choice to model or
approximate the behavior of practical wireless communication
systems [22–24]. Our contributions are as follows:
• We first reformulate the adaptive recoding as a finite-

horizon Markov decision process problem, where the objec-
tive is to seek the optimal recoding policy at each hop such
that the reward function balancing the throughput at the
destination node and the processing complexity at all com-
munication links is optimized. In particular, the transition
dynamics of the MDP model depend on the parameters of
burst-noise channels, which may not be reliably estimated.

• To tackle the challenge of estimating the parameters
of burst-noise channels, we investigate the uncertainty
quantification problem regarding those channel parameters.
We first provide their point estimation using expecta-
tion–maximization (EM) algorithm based on a single trajec-
tory of historical observations indicating whether the trans-
mitted packet is successfully received. Based on multiple
trajectories of observations, we build an elliptic confidence
set that covers the true channel parameters with high prob-
ability. Such coverage is guaranteed asymptotically regard-



ing the sample size and negligible EM optimization error.
• Finally, we propose solving the adaptive recoding problem

by seeking the worst-case transition dynamics among an
ambiguity set of the MDP model so that the worst-case
MDP risk function is minimized. The ambiguity set is
constructed by considering the parametric form of the
transition dynamics in terms of the parameters from the
burst-noise channel, whereas those parameters are assumed
to belong to the constructed confidence set.

• Numerical simulations show that the proposed recoding
strategy can improve network throughput by 119.12%
compared with the baseline that assumes an independent
loss channel model.

Notations. For integers m ≤ n, define [m : n] :=
{m,m+1,...,n}. We write [0 : n] as [n] for simplicity. We
assume coding are performed in a finite field of size q. We
use P⊗ to indicate that the probability is evaluated with
respect to the sampling distribution.

II. PROBLEM SETUP

A batched network code for a line network of length L,
with nodes 0,1,...,L, is formed by the following operations:

• The source node first encodes the input message as a
number of batches, each of which has M packets. For
each batch, recoding is performed based on the M packets
to generate N1 recoded packets using random linear
combination (RLC) over field size q, which are then
transmitted to the next node.

• For each batch of packets and for ℓ = 1, ... ,L− 1, the
intermediate network node ℓ performs recoding to generate
Nℓ packets based on Nℓ−1 received packets, which are
then transmitted to node ℓ+1.

• The destination node L performs decoding based on all
received packets over all batches.

For intermediate node ℓ∈ [1:L−1], one can determine the
number of recoded packets Nℓ based on the information of
received batches at this node. The number of recoded packets
N1 at the source node can be determined based on the whole
network topology. Such a methodology is called adaptive
recoding in literature [15, 25]. Based on this observation, we
formulate the above problem as a Markov decision process
[26], which consists of the following components:

a) Stage: The index of node, denoted as ℓ∈ [L].
b) State: The rank of the received batch, denoted as

sℓ∈ [M ], where M is the batch size at the source node.
c) Action: The number of recoded packets sent to

the outcoming link, denoted as Nℓ. Denote the policy that
generates the action Nℓ based on state sℓ by πℓ(·|sℓ). A large
value of Nℓ spends too much resources but does not improve
network throughput very much. Therefore, we assume the
action space is bounded such that Nℓ ∈ [Nmax] for some
positive integer Nmax∈N+.

Fig. 1. Illustration of Gilbert-Elliott channel model

d) Reward Function: At stage ℓ∈ [L−1], the reward
rℓ(sℓ,Nℓ) =−η ·Nℓ, where η > 0 is some fixed parameter.
At the final stage L, the reward rL(sL)=sL.

e) Transition Dynamics: Given a current state sℓ
and the action Nℓ for ℓ ∈ [L − 1], the next state sℓ+1

follows a special rank distribution Pℓ(·|sℓ, Nℓ). Let
P := {Pℓ(s

′|s, N)}s,s′∈[M],N∈[Nmax],ℓ∈[L−1] denote the
set of transition probability matrices, called the transition
dynamics of the MDP. When considering the batch-wise
packet loss model [27], i.e., for ℓ ∈ [L−1], the probability
that node ℓ transmits s packets while node ℓ+1 receives
s′ packets is given by qℓ(s

′ | s), as derived in [3]. Then, the
following governs the transition dynamics of the system:

Pℓ(s|sℓ,Nℓ)=


0, if sℓ<s,

Nℓ∑
k=s

qℓ(k|Nℓ)ζ
sℓ,k
s , if sℓ≥s.

(1)

Here ζi,kj is the probability that i × k size matrix with
independent entries uniformly distributed over the field of
size q has rank j, which can be expressed in a closed-form as
in [3, Eq. (2.4)]. For an independent loss channel with error
probability ϵ, it holds that

qℓ(k|Nℓ)=

(
Nℓ

k

)
(1−ϵ)kϵNℓ−k. (2)

The independent packet loss channel is generally too simple
to approximate the practical communication channel. Instead,
we focus on the Gilbert-Elliot channel model with parameters
(pG,pB,pGB,pBG). For states good (G) and bad (B), the
probability that a transmitted packet is lost is pG and pB,
respectively. The transition between states G and B can be
represented with a two-state Markov chain with transition
probabilities pGB,pBG, respectively as illustrated in Fig. 1.

Proposition 1. Denote by q(·|N) the distribution of received
packets provided that N packets are transmitted from the
incoming node. Suppose the transmission channel per batch
is the GE channel with parameters (pG,pB,pGB,pBG), then
the probability mass value q(k|N)=gN,k+bN,k, where the
parameters gN,k,bN,k can be computed recursively.

• g0,0=
pBG

pGB+pBG
, b0,0=

pGB

pGB+pBG
;

• gn+1,k=(1−pGB)pGgn,k+(1−pGB)(1−pG)gn,k−1

+pBGpBbn,k+pBG(1−pB)bn,k−1;
• bn+1,k=pGBpGgn,k+pGB(1−pG)gn,k−1

+(1−pBG)pBbn,k+(1−pBG)(1−pB)bn,k−1;
• gn,k=0,bn,k=0 for undefined indices (n,k).



Given a policy π := (π0, π1, ... , πL−1) and transition
dynamics P :={Pℓ(s

′|s,N)}s,s′,N,ℓ we define the expected
total reward as:

R(π;P)=Eπ,P
[ ∑
ℓ∈[L−1]

rℓ(sℓ,Nℓ)+rL(sL)
]
, (3)

where the expectation is taken with respect to the stochastic
policy π and transition dynamics P conditioned on the initial
state s0=M . Once parameters θ :=(pG,pB,pGB,pBG) are
known, the optimal recoding policy π can be computed using
value iteration algorithm [26].

In this paper, we focus on the scenarios where channel
parameters are unknown. In the following, we establish
confidence sets for these parameters at hop ℓ=0,...,L−1,
denoted as Ξℓ. Then, we consider the robust MDP
formulation, where we seek the optimal policy π to maximize
the worst-case reward function as follows:

inf
P∈P

R(π;P), (4)

where P denotes the set of transition probability matrics
Pℓ for stage ℓ ∈ [L− 1], i.e., {Pℓ(s

′|s,N)}s,s′,N ∈ Pℓ. To
maintain computational traceability, we specify the ambiguity
set Pℓ as a (s,a)-rectangular set [28] of the following form:

Pℓ=
{
Pℓ : Pℓ(·|s,N)∈Mℓ

s,N ,∀s,N
}
, (5)

withMℓ
s,N representing the uncertainty set containing the tran-

sition kernel Pℓ(·|s,N) of the form (1) with parameter θ∈Ξℓ.
In the next section, we will specify the construction of the

uncertainty set Ξℓ. After that, one can optimize the objective
function (4) using the robust value iteration [29] as follows:
For ℓ=L, VL(sL)=rL(sL). For ℓ=L−1,...,0, we solve:

Qℓ(sℓ,Nℓ)= sup
Pℓ(·|sℓ,Nℓ)∈Mℓ

sℓ,Nℓ

{
rℓ(sℓ,Nℓ)

+
∑
sℓ+1

Pℓ(sℓ+1|sℓ,Nℓ)Vℓ+1(sℓ+1)

}
, (6)

for all state-action pairs (sℓ,Nℓ) and

Vℓ(sℓ)=min
Nℓ

Qℓ(sℓ,Nℓ), ∀sℓ. (7)

The optimal reward of the robust MDP equals the value
function V0(s0 = M). Robust MDP is a useful model
for sequential decision-making problems with parameter
uncertainty [30]. The parameter uncertainty set is a key
ingredient of any robust MDP model. A good uncertainty
set should be flexible enough such that it contains true
model parameters with a high confidence level. It should
also not be too large to avoid overly conservative decisions.
In literature, various uncertainty sets have been proposed,
such as those based on moment statistics or probability
divergences [28, 29, 31, 32]. We herein adopt these references
to construct a moment-based uncertainty set for our

robust MDP model. Furthermore, we consider its special
applications in adaptive network coding and provide novel
statistical guarantees and optimization algorithms.

III. ESTIMATION OF GB CHANNEL PARAMETERS

In this section, we provide uncertainty quantification
regarding the parameters of a given GE channel
θ := (pG, pB, pGB, pBG) based on historical data.
Denote by D = {(Xi

j, Y
i
j )}j∈[n],i∈[1:m] the ground

truth data consisting of m independent and identically
distributed (i.i.d.) trajectories, with the i-th trajectory being
((Xi

0, Y
i
0 ), (X

i
1, Y

i
1 ), ... , (X

i
n, Y

i
n)). Here Xi

j is a latent
Boolean-valued variable, indicating whether the channel state
is good (Xi

j=1) or bad (Xi
j=0), and Y i

j is a Boolean-valued
observation variable indicating whether the j-th packet from
i-th trajectory is successfully transmitted or not. Assume
only samples Do={Y i

j }j∈[n],i∈[1:m] are observed, and i.i.d.
variables Xi

0,i∈ [1:m] follow the known initial distribution ν,
based on which we will provide the uncertainty quantification
of parameter θ. In practice, this information can be obtained
by setting up a feedback between the transmitter and receiver
in each communication hop.

a) Point Estimation: We first give a point estimation of
θ using the expectation–maximization (EM) algorithm. We
herein extend the work of [33], which studied the parameter
estimation problem of binary symmetric channels, to the
packet loss channels. Algorithm 1 summarizes the overall EM
algorithm for estimating the channel parameter θ. Specifically,
the posterior probability mass values ϕk|n and ϕk:k+1|n in
Step 2 of Algorithm 1 can be obtained by standard techniques
from decoding in hidden Markov models [34].

b) Uncertainty Quantification: If the obtained solution
from EM algorithm is equal to the optimal solution θ̂
from solving the maximum likelihood estimation, by [34,
Chapter 12], it holds that n1/2(θ̂ − θ∗) asymptotically
converge to a normal distribution for some covariance matrix
Σ that can be estimated from data. Since it is assumed that we
have m i.i.d. trajectories {Y i

j }j∈[n],i∈[1:m], we can obtain m

estimators θ̂(1),...,̂θ(m) using Algorithm 1, and then construct
a set estimation of θ as:

Ξ=

{
θ : (θ−θ)Σ̂−1(θ−θ)≤

T2
4,m−4(1−α)

m

}
. (8)

Here θ, Σ̂ are sample mean and sample covariance over
θ̂(1),...,θ̂(m), respectively, and T2

4,m−4(1−α) is the (1−α)-
critical value of F -distribution with parameters 4 and m−4
(see [35] for detailed discussion of F -distribution). Conse-
quently, as n,m→∞, it holds that P⊗{θ∈Ξ}=1−α, i.e., Ξ
is the asymptotic confidence set of the ground truth channel
parameter θ. One can repeat this procedure to generate
uncertainty set Ξℓ at each hop ℓ∈ [L−1] for solving (4).

Remark 1 (Optimization for Problem (6)). The most
computationally challenging part of solving the robust MDP



Algorithm 1 Point Estimation of Channel Parameter

Require: Initial guess θ̂, single trajectory {Yj}j∈[n].
1: while not convergent do
2: For k∈ [n],i∈ [1],j∈ [1], compute posterior probability

mass values

ϕk|n(i)=Pθ̂(Xk=i |Y0:n),
ϕk:k+1|n(i,j)=Pθ̂((Xk,Xk+1)=(i,j) |Y0:n).

3: Update θ̂ :=(p̂B ,̂pG,̂pBG,̂pGB) with

p̂B=

∑n
k=0ϕk|n(0)Yk∑n
k=0ϕk|n(0)

,

p̂G=

∑n
k=0ϕk|n(1)Yk∑n
k=0ϕk|n(1)

,

p̂BG=

∑n
k=1ϕk−1:k|n(0,1)∑n

k=1

∑1
l=0ϕk−1:k|n(0,l)

,

p̂GB=

∑n
k=1ϕk−1:k|n(1,0)∑n

k=1

∑1
l=0ϕk−1:k|n(1,l)

.

4: end while
Return θ̂

formulation is to estimate the worst-case transition probability
in Problem (6), which amounts to solving the parametric
finite-dimensional optimization problem

sup
θ∈Ξℓ

{
rℓ(sℓ,Nℓ)+

∑
sℓ+1∈[sℓ]

Nℓ∑
k=sℓ+1

qℓ(k|Nℓ)ζ
sℓ,k
sℓ+1

Vℓ+1(sℓ+1)
}
.

In the formulation above, the objective depends on the
decision variable θ through the packet loss model qℓ(·|Nℓ),
whose detailed expression can be obtained from Proposition 1.
Due to the non-concavity of the objective function, we apply
the Iterative Fast Gradient Method (IFGM) proposed in [36]
to approximately solve this problem. Herein, the idea is to
iteratively optimize the first-order Taylor expansion of the
objective function around the last iteration point.

IV. NUMERICAL STUDY

We specify the following hyper-parameter in our
numerical study: L = 10, M = 20, η = 0.01. Each
communication link is an identical GB channel with
parameter (pG,pB,pGB,pBG)=(0.7,0.3,0.25,0.8).

We first validate the performance of uncertainty
quantification regarding the channel parameter. Figure 2
reports the confidence set estimation of these 4 parameters
projected on each coordinate across different sample sizes n
with m=20 trajectories and confidence level α=0.05. From
the plot, we observe the constructed confidence intervals
guarantee the coverage of ground truth channel parameters
with high probability, especially for large sample sizes.
Besides, the width of confidence intervals becomes smaller

as the sample size increases, which suggests our provided
algorithm gives a sample-efficient uncertainty quantification
regarding unknown parameters.
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Fig. 2. Uncertainty quantification of channel parameters for different
sample sizes n. Plots from left to right correspond to channel parameters
pG,pB,pGB,pBG, respectively.
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Fig. 3. Network throughput by var-
ious adaptive recoding approaches.
Compared with the independent
loss baseline model, our frame-
work improves the throughput by
119.12%.

Next, we compare the
performance of our adaptive
recoding framework with
two approaches: the baseline
that mistakenly assumes the
communication channel has an
independent packet loss model
and the oracle optimal method
in which the channel model is
assumed to be exactly known.
These approaches optimize
the MDP reward (3) with
known transition dynamics,
which can be solved using
the standard value iteration
algorithm [26]. From the plot in Figure 3, we realize that
our proposed method significantly improves the throughput
over using an independent packet loss model, and it has small
sub-optimality gap in comparison with the oracle optimal.

V. CONCLUSION

We provided a robust MDP framework to design a reliable
adaptive network recoding strategy under scenarios where
channel parameters cannot be accurately obtained. An inter-
esting research direction is to incorporate more sophisticated
communication requirements into the adaptive recoding
framework, such as multi-cast and multi-user communication
with fairness constraints. Finally, for the networks with



ultra-large state space, it is desirable to employ some low-
complexity approximation algorithms such as [37] to reduce
the complexity of robust value iteration algorithms.
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