9.6. Wednesday for MAT4002

9.6.1. Simplicial Approximation Theorem

Aim: understand homotopy between simplicial complexes $f, g: |K| \rightarrow |L|$

Definition 9.9 [Simplicial Map] A simplicial map between $K_1 = (V_1, \Sigma_1)$ and $K_2 = (V_2, \Sigma_2)$ is a mapping $f : K_1 \to K_2$ such that

- 1. It maps vertexes to vertexes
- 2. It maps simplicies to simplicies, i.e.,

$$f(\sigma_1) \in \Sigma_2, \forall \sigma_1 \in \Sigma_1,$$

Example 9.3 For instance, consider the simplicial complexes defined as follows:

In particular, $\{1,2,3,4\} \notin \Sigma_1$ and $\{1,2,3\} \in \Sigma_2$.

In this case, we can define the simplicial map as:

$$f(1) = 1$$
, $f(2) = 2$, $f(3) = 3$, $f(4) = 3$

In particular, $f(\{1,2,4\}) = \{1,2,3\} \in \Sigma_2$.

Now we want to define the simplicial map between the topological realizations. There are several observations:

Key Observations.

- 1. We have seen that each $|K| \subseteq \mathbb{R}^m$ for some *m*. In particular, m = #V 1.
- 2. Each point $x \in |K|$ lies uniquely on an inside of some $\Delta_{\sigma'}$, where $\sigma \in \Sigma$.
- 3. Suppose that the vertices of K_1 are $V_1 = \{u_1, \ldots, u_n\} \subseteq \mathbb{R}^m$. Then every $\mathbf{x} \in K_1$ can be uniquely written as

$$\boldsymbol{x} = \sum_{i=1}^{k} \alpha_i U_{\sigma_i}$$

with $\alpha_i > 0, \sum \alpha_i = 1$ and $\sigma = \{U_{\sigma_1}, \dots, U_{\sigma_k}\}$ is the unque simplex where $x \in$ inside(Δ_{σ}).

4. Our simplicial map f maps V_1 to $V_2 = \{w_1, \dots, w_p\} \subseteq \mathbb{R}^m$, so for each i, we have $f(u_i) = w_j$ for some $j \in \{1, ..., p\}$.

Definition 9.10 [Mapping induced from Simplicial Mapping] The simplicial map $f: K_1 \rightarrow K_1$ K_2 induces a mapping $|f|:|K_1| \rightarrow |K_2|$ between the topological realizations such that

- 1. It maps vertexes to vertexes, i.e., $|f|(v_1) = f(v_1), \forall v_1 \in V(K_1)$. 2. it is affine, i.e.,

$$|f|\left(\sum_{i=1}^{k} \alpha_{i} v_{i}\right) = \sum_{i=1}^{k} \alpha_{i} |f|(v_{i})$$

 $|f|: |K_1| \rightarrow |K_2|$ is continuous. (\mathbf{R})

Motivation. Suppose we are given a continuous map $|g|: |K| \rightarrow |L|$, we want to approximate |g| by |f|, such that $f: K \to L$ is a simplicial map. In this case, f is an easier object to study compared with |g|.

We hope to find a mapping *f* such that $|f| \simeq |g|$. However, we cannot achieve this goal unless we subdivide *K* into smaller pieces:

Definition 9.11 [Subdivision] Let K be a simplicial complex. A simplicial complex K' is called a **subdivision** of K if

- 1. Each simplex of K' is contained in a simplex of K
- 2. Each simplex of K equals the union of finitely many simplices of K'

As a result, we can form an homeomorphism $h: |K'| \to |K|$ such that for each $\sigma' \in \Sigma_{K'}$, there exists $\sigma \in \Sigma_K$ satisfying

$$f(\Delta_{\sigma'}) \in \Delta_{\sigma}$$

• Example 9.4 Consider the mapping $|g|:|K| \rightarrow |L|$ given in the figure below:

Here we denote |g|(a) by A and similarly for the other vertices. It's clear that we can not form a homeomorphism from |K| to |L|. One remedy is to subdivide K into smaller pieces as follows:

In this case, it is clear that $|f|: |K'| \to |L|$ is a homeomorphism.

Suppose we have a matric on |K|. By subdivision, we can consider |K'| such that for any $\sigma' \in \Sigma_{K'}$, any two points in $\Delta_{\sigma'}$ has a smaller distance.

The following result gives a criterion for the existence of a simplicial approximation for a mapping between topological realizations. For this we recall the notion of star. For a given simplicial complex K, define the star at a vertex v by

$$\operatorname{star}(v) = \bigcup_{v \in \sigma} \sigma^{\circ}.$$

Proposition 9.7 Let $f : |K| \to |L|$ be a continuous mapping. Suppose that for each $v \in V_K$, there exists $g(v) \in V_L$ such that

$$f(\operatorname{st}_K(v)) \subseteq \operatorname{st}_L(g(v)),$$

then the mapping $g: V_K \to V_K$ gives $|g| \simeq f$.

In particular, g is called the **simplicial approximation** to f.

Example 9.6 1. First, we give an example of mapping f such that an simplicial

Theorem 9.4 — **Simplicial Approximation**. Let K, L be simplicial complexes with V_K finite, and $f : |K| \to |L|$ be continuous. Then there eixsts a subdivision |K'| of |K| and a simplicial map g such that $|g| \simeq f$.