9.3. Monday for MAT4002

Reviewing.

- 1. Homotopy: we denote the homotopic function pair as $f \simeq g$.
- 2. If $Y \subseteq \mathbb{R}^n$ is convex, then the set of continuous functions $f : X \to Y$ form a single equivalence class, i.e., {continuous functions $f : X \to Y$ }/~ has only one element

9.3.1. Remarks on Homotopy

Proposition 9.4 Consider four continous mappings

$$W \xrightarrow{f} X, \quad X \xrightarrow{g} Y, \quad X \xrightarrow{h} Y, \quad Y \xrightarrow{k} Z.$$

If $g \simeq h$, then

$$g \circ f \simeq h \circ f$$
, $k \circ g \simeq k \circ h$

Proof. Suppose there exists the homotopy $H : g \simeq h$, then $k \circ H : X \times I \rightarrow Z$ gives the momotopy between $k \circ g$ and $k \circ h$.

Simiarly, $H \circ (f \times id_I) : W \times I \to Y$ gives the homotopy $g \circ f \simeq h \circ f$.

Definition 9.4 [Homotopy Equivalence] Two topological spaces X and Y are homotopy equivalent if there are continuous maps $f: X \to Y$, and $g: Y \to X$ such that

$$g \circ f \simeq \mathsf{id}_{X \to X}$$
$$f \circ g \simeq \mathsf{id}_{Y \to Y},$$

which is denoted as $X \simeq Y$.

_		
	n	
	ĸ	
ι.		
ς.		1

- 1. If $X \cong Y$ are homeomorphic, then they are homotopic equivalent.
- 2. The homotopy equivalence $X \simeq Y$ gives a bijection between $\{\phi : \text{continuous } W \rightarrow X\}/\sim$ and $\{\phi : \text{continuous } W \rightarrow Y\}/\sim$, for any given topological space W.

Proof. Since $X \simeq Y$, we can find $f : X \to Y$ and $g : Y \to X$ such that $f \circ g \simeq id_Y$ and $g \circ f \simeq id_X$. We construct a mapping

 $\phi: \quad \{\phi: \text{ continuous } W \to X\}/\sim \to \{\phi: \text{ continuous } W \to Y\}/\sim$ with $[\phi] \mapsto [f \circ \phi]$

 ϕ is well-defined since $\phi_1 \sim \phi_2$ implies $f \circ \phi_1 \sim f \circ \phi_2$ Also, we can construct a mapping

 $\beta: \quad \{\phi: \text{continuous } W \to Y\}/\sim \to \{\phi: \text{continuous } W \to X\}/\sim$ with $[\psi] \mapsto [g \circ \phi]$

Similarly, β is well-defined.

Also, we can check that $\alpha \circ \beta = id$ and $\beta \circ \alpha = id$. For example,

$$\alpha \circ \beta[\psi] = [f \circ g \circ \psi] = [\psi],$$

where the last equality is because that $f \circ g \simeq id_Y$.

3. The homotopy equivalence $X \simeq Y$ forms an equivalence relation between topological spaces

Compared with homeomorphism, some properties are lost when consider the homotopy equivalence.

Definition 9.5 [Contractible] The topological space X is **contractible** if it is homotopy equivalent to any point $\{c\}$.

R In other words, there exists continuous mappings f,g such that

$$\{\boldsymbol{c}\} \xrightarrow{f} X \xrightarrow{g} \{\boldsymbol{c}\}, g \circ f \simeq \mathrm{id}_{\{\boldsymbol{c}\}}$$
$$X \xrightarrow{g} \{\boldsymbol{c}\} \xrightarrow{f} X, f \circ g \simeq \mathrm{id}_{X}$$

Note that $g \circ f \simeq id_{\{c\}}$ follows naturally; and since $X \cong X$, we can find f, g

such that $f \circ g = c_y$ for some $y \in X$, where $c_y : X \to X$ is a constant function $c_y(x) = y, \forall x \in X$. Therefore, to check *X* is contractible, it suffices to check $c_y \simeq id_X, \forall y \in X$.

Therefore, *X* is contractible if its identity map id_X is homotopic to any constant map $c_y, \forall y \in X$.

Proposition 9.5 The definition for contractible can be simplified further:

- 1. *X* is contractible if it is homotopy equivalent to some point $\{c\}$
- 2. *X* is contractible if the identity map id_X is homotopic to some constant map $c_y(x) = y$.

Proof. The only thing is to show that $c_y \simeq c_{y'}, \forall y, y' \in X$. By hw 3, *X* is path-connected, and therefore there exists continous p(t) such that

$$p(0) = y, \quad p(1) = y'$$

Therefore, we construct the homotopy between c_y and $c_{y'}$ as follows:

$$H(x,t) = p(t).$$

• Example 9.1 1. $X = \mathbb{R}^2$ is contractible:

It suffices to show that the mapping $f(\mathbf{x}) = \mathbf{x}, \forall \mathbf{x} \in \mathbb{R}^2$ is homotopic to the constant function $g(x) = (0,0), \forall x \in \mathbb{R}^2$, i.e., $g = c_{(0,0)}$.

Consider the continuous mapping $H(\mathbf{x},t) = t f(\mathbf{x})$, with

$$H(\mathbf{x}, 0) = c_{(0,0)}, \quad H(\mathbf{x}, 1) = \mathrm{id}_X$$

Therefore, $c_{(0,0)} \simeq id_X$. Since $c_{(0,0)} \simeq c_y$, $\forall y \in \mathbb{R}^2$, we imply $c_y \simeq id_X$ for any $y \in \mathbb{R}^2$. Therefore, X is contractible. More generally, any convex $X \subseteq \mathbb{R}^n$ is contractible.

*S*¹ is not contractible, and we will see it in 3 weeks' time. In particular, we are not able to construct the continuous mapping

$$H: S^1 \times [0,1] \rightarrow S^1$$

such that

$$H(e^{2\pi ix}, 0) = e^{2\pi ix}, \quad H(e^{2\pi ix}, 1) = e^{2\pi i(0)} = 1$$

How about the mapping $H(e^{2\pi ix}, t) = e^{2\pi ixt}$? Unfortunately, it is not well-defined, since

$$H(e^{2\pi i(1)}, t) = e^{2\pi i t} = H(e^{2\pi i(0)}, t) = 1$$

and the equality is not true for $t \neq 0, 1$.

Definition 9.6 [Homotopy Retract] Let $A \subseteq X$ and $i : A \hookrightarrow X$ be an inclusion. We say A is a homotopy retract of X if there exists continuous mapping $r : X \to A$ such that

$$r \circ i : A \hookrightarrow X \xrightarrow{r} A = \mathsf{id}_A$$
$$i \circ r : X \xrightarrow{r} A \hookrightarrow X \simeq \mathsf{id}_Y$$

In particualr, $A \simeq X$.

• Example 9.2 The 1-sphere S^1 is a homotopy retract of Mobius band M. Let $M = [0,1]^2/\sim$ and $S^1 = [0,1]/\sim$. Define the inclusion i and r as:

> $i: S^1 \hookrightarrow M$ with $[x] \mapsto [(x, \frac{1}{2})]$

$$r: M \to S^1$$

with $[(x,y)] \mapsto [x]$

As a result,

$$r \circ i = id_{S^1}, \quad i \circ r([(x, y)]) = [(x, 1/2)]$$

It suffices to show $i \circ r \simeq id_M$, where $id_M([(x,y)]) = [(x,y)]$.

Construct the continous mapping $H: M \times I \to M$ with

$$H([(x, y)], t) := [(x, (1 - t)y + t/2)]$$

To show the well-definedness of H, we need to check

$$H([(0, y)], t) = H([(1, 1 - y)], t), \quad \forall y \in [0, 1]$$

It's clear that H gives a homotopy between $i \circ r$ and id_M , i.e., $i \circ r \simeq id_M$

• Example 9.3 The n-1-sphere S^{n-1} is a homotopy retract of $\mathbb{R}^n \setminus \{\mathbf{0}\}$: We have the inclusion $i: S^{n-1} \to \mathbb{R}^n \setminus \{0\}$ and

$$r: \mathbb{R}^n \setminus \{0\} \to \mathbb{S}^{n-1}$$

with $x \mapsto \frac{x}{\|x\|}$

Therefore, $r \circ i = id_{S^{n-1}}$ and $i \circ r(x) = \frac{x}{\|x\|}$.

It suffices to show that $i \circ r \simeq id_{\mathbb{R}^n \setminus \{0\}}$. Consider the homotopy $H(x,t) = t\mathbf{x} + (1-t)\mathbf{x}/||\mathbf{x}||$ such that

$$H(\boldsymbol{x},0) = i \circ r(\boldsymbol{x}), \quad H(\boldsymbol{x},1) = \boldsymbol{x} = \mathrm{id}(\boldsymbol{x})$$

To show the well-definedness of H, we need to check $H(x,t) \in \mathbb{R}^n \setminus \{0\}$ for all $x \in \mathbb{R}^n \setminus \{0\}$ and $t \in [0,1]$.

Definition 9.7 [Homotopic Relative] Let $A \subseteq X$ be topological spaces. We say $f, g: X \to Y$

are homotopic relative to A if there eixsts $H: X \times I \rightarrow Y$ such that

$$\begin{cases} H(x,0) = f(x) \\ H(x,1) = g(x) \end{cases}$$

and $H(a,t) = f(a) = g(a), \forall a \in A$

