7.5. Wednesday for MAT4002

7.5.1. Remarks on Triangulation

Consider the simplical complex $K = (V, \Sigma)$ with

$$V = \{1, 2, 3, 4, \dots, 9\}, \quad \Sigma = \begin{cases} 9 \text{ subsets with 1 element} \\ 27 \text{ subsets with 2 elements} \\ 18 \text{ subsets with 3 elements} \end{cases}$$

We start to build the topological realization of K with 9 **0**-simplicies, 27 **1**-simplicies, and 18 **2**-simplicies. The identification of them is as follows:

Figure 7.1: Step 1: Identify 3 columns separately, i.e., identify {1,7,4,1,2,8,5,2}, {2,8,5,2,3,9,6,3}, and {3,9,6,3,1,7,4,1}.

Figure 7.2: Step 2: "gluing" these three prisms in the figure above together.

Question: why *K* is homeomorphic to the torus?

• **Example 7.9** Consider the simplicial complex (V, Σ) described below:

The $|(V,\Sigma)|$ is homeomorphism to the quotient space S^1 plotted below

Furthermore, can we build a triangulation of the tours using fewer simplices? The answer is no. Consider the figure below: at the bottom edge of this square, there are two 1-simplicies labled {1,2}, which cannot happen in a tours.

Interesting question: does the triangulation of the figure below leads to S^2 ? Answer: No.

The simplicial complex gives us another way to study *X*, i.e., it suffices to study (V, Σ) such that $|(V, \Sigma)| \cong X$. The question is that can we distinguish $X = S^1 \times S^1$ and $Y = S^2$? In other words, can we distinguish the difference of corresponding topological realizations?

Theorem 7.2 — Euler's Formula. Suppose that
$$|(V_1, \Sigma_1)| \cong |(V_2, \Sigma_2)|$$
, then

$$\sum_{i=1}^{\infty} (-1)^i \text{ (number of subsets in } \Sigma_1 \text{ with } (i+1)\text{-element)}$$

$$= \sum_{i=1}^{\infty} (-1)^i \text{ (number of subsets in } \Sigma_2 \text{ with } (i+1)\text{-element)}$$

From previous examples we can see that $X(S^2) = 5 - 9 + 6 = 2$ and $X(S^1 \times S^1) =$

9 - 27 + 18 = 0, which implies

$$S^2 \not\cong S^1 \times S^1.$$

7.5.2. Simplicial Subcomplex

Definition 7.12 [Simplicial Subcomplex] A subcomplex of a simplicial complex $K = (V, \Sigma)$ is a simplicial complex $K' = (V', \Sigma')$ such that

$$V' \subseteq V, \quad \Sigma' \subseteq \Sigma$$

Proposition 7.14 Suppose K' is subcomplex of K, then |K'| is closed in |K|.

Proof. Suppose that *D* is the disjoint union of all the simplicial complex forming |K|. (note that the number of component in *D* is $|\Sigma|$)

Consider the canonical projection mapping $D \to |K|$. Observe that $p^{-1}(|K'|)$ precisely equals to $\coprod_{\sigma' \in \Sigma'} \sigma'$, which is closed in *D*. By definition of quotient topology, |K'| is also closed.

Definition 7.13 [Subcomplex spanned by vertices] Let $K = (V, \Sigma)$ be a simplicial complex and $V' \subseteq V$. Then the subcomplex spanned by V' is (V', Σ') such that

- V' denotes the vertex set.
- $\bullet\,$ the simplices Σ' is given by

$$\{\sigma \in \Sigma \mid \sigma \subseteq V'\}$$

Definition 7.14 [Link and Star] Let $(V, \Sigma) = K$ be simplicial complex

• The link of $v \in V$, denoted as lk(v) is the sub-complex with

- vertex set

$$\{w \in V \setminus \{v\} \mid \{v, w\} \in \Sigma\}$$
- simplicies

$$\{\sigma \in \Sigma \mid v \notin \sigma \text{ and } \sigma \cup \{v\} \in \Sigma\}$$
• The star of v (denoted as st (v)) is

$$\bigcup \{\text{inside}(\sigma) \mid \sigma \in \Sigma, v \in \sigma\}$$

Proposition 7.15 st(v) is open and $v \in st(v)$.

Proof. Omitted.

In fact, $|K| \setminus \text{st}(v)$ is the simplicial subcomplex spanned by *V*.

7.5.3. Some properties of simplicial complex

Proposition 7.16 Suppose that $K = (V, \Sigma)$, where *V* is finite. Then |K| is compact.

Proof. The mapping $p : D \to |K|$ is a canonical projection mapping, which is continuous; and *D* (the finite disjoint union of Δ_{σ} 's) is compact.

Therefore, p(D) = |K| is compact.

Proposition 7.17 For any simplicial complex $K = (V, \Sigma)$, where *V* is finite, there is a continuous injection

$$f: |K| \to \mathbb{R}^n$$
 for some *n*

Proof. Let $K' = (V, \Sigma')$, where $\Sigma' =$ power set of *V*. Then

$$|K'| = \Delta^{|V|-1} \subseteq \mathbb{R}^{|V|}$$

Consider the inclusion

$$i:|K|\to |K'|$$

which comes from the following:

- 1. Consider the $D := \coprod_{\sigma \in \Sigma} \Delta_{\sigma}$ and $D' = \coprod_{\sigma' \in \Sigma'} \Delta_{\sigma'}$ in (V, Σ) and (V, Σ')
- 2. Construct the mapping $\tilde{i}: D \hookrightarrow D' \xrightarrow{p'} |K|$.
- 3. The mapping \tilde{i} descends to $i : D/\sim \to |K'|$ (try to write down the detailed mapping), which is continuous and injective.

Therefore, $|K| \hookrightarrow |K'|$, i.e., $|K| \hookrightarrow \mathbb{R}^n$. The proof is complete.