6.3. Monday for MAT4002

6.3.1. Quotient Topology

Now given a topologcal space *X* and an equivalence relation \sim on it, our goal is to construct a topology on the space *X*/ \sim .

Proposition 6.1 Suppose (X, \mathcal{T}) is a topological space, and \sim is an equivalene relation on *X*. Define the canonical projection map:

$$p: X \to X/ \sim$$

with $x \to [x]$

which assigns each point $x \in X$ into the equivalence class [x]. Then define a family of subsets \tilde{T} on X / \sim by:

$$\tilde{U} \subseteq X / \sim \text{ is in } \tilde{\mathcal{T}} \text{ if } p^{-1}(\tilde{U}) \text{ is in } \mathcal{T}$$

Then $\tilde{\mathcal{T}}$ is a topology for X/\sim , called the **quotient topology**, and $(X/\sim, \tilde{\mathcal{T}})$ is called the quotient space, and $p: X \to X/\sim$ is called the **natural map**.

Proof. 1. $p^{-1}(X/\sim) = X \in \mathcal{T}$ and $p^{-1}(\emptyset) = \emptyset \in \mathcal{T}$, which implies $X/\sim \in \tilde{\mathcal{T}}$ and $\emptyset \in \tilde{\mathcal{T}}$.

2. Suppose that $\tilde{U}, \tilde{V} \in \tilde{\mathcal{T}}$, then we imply

$$p^{-1}(\tilde{U}), p^{-1}(\tilde{V}) \in \mathcal{T} \implies p^{-1}(\tilde{U} \cap \tilde{V}) \in \mathcal{T},$$

i.e., $\tilde{U} \cap \tilde{V} \in \tilde{\mathcal{T}}$.

3. Following the similar argument in (2), and the relation

$$p^{-1}\left(\bigcup \tilde{U}_i\right) = \bigcup p^{-1}(\tilde{U}_i),$$

we conclude that \tilde{T} is closed under countably union. The proof is complete.

- The proposition (6.1) claims that Ũ is open in X/ ~ iff p⁻¹(Ũ) is open in X. The general question is that, does p(U) is open in X/~, given that U is open in X? This may not necessarily hold. (See example (6.4)) In general p⁻¹(p(U)) is strictly larger than U, and may not be necessarily open in X, even when U is open.
- 2. By definition, we can show that *p* is continuous.

To fill the gap on the question shown in the remark, we consider the notion of the open mapping:

Definition 6.3 [Open Mapping] A function $f: X \to Y$ between two topological spaces is an **open mapping** if for each open U in X, f(U) is open in Y.

From the remark above, we can see that:

 (\mathbf{R})

- 1. Not every continuous mapping is an open mapping
- 2. The canonical projection mapping *p* is not necessarily be an open mapping.

• Example 6.4 1. The mapping $p: [0,1] \times [0,1] \to ([0,1] \times [0,1]) / \sim$ sending the square to the Mobius band M is not an open mapping: Consider the open ball $U = B_{1/2}((0,0))$ in $[0,1] \times [0,1]$. Note that p(U) is open in M iff $p^{-1}(p(U))$ is open in $[0,1] \times [0,1]$. We can calculate $p^{-1}(p(U))$ explicitly:

$$p^{-1}(p(U)) = U \cup \{(1,y) \mid 1/2 \le y \le 1\},\$$

which is not open.

6.3.2. Properties in quotient spaces

6.3.2.1. Closedness on X/ \sim

Proposition 6.2 A subset \tilde{V} is closed in the quotient space $X / \sim \inf p^1(\tilde{V})$ is closed in *X*, where $p : X \to X / \sim$ denotes the canonical projection mapping.

Proof. It follows from the fact that

$$p^{-1}((X/\sim)\setminus \tilde{V}) = X\setminus p^{-1}(\tilde{V})$$

6.3.2.2. Isomorphism on X/\sim

The quotient space can be used to study other type of spaces:

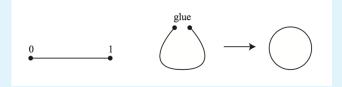
Example 6.5 Consider X = [0, 1]. We define $x_1 \sim x_2$ if:

$$x_1 = 0, x_2 = 1, \text{ or } x_1 = 1, x_2 = 0$$

In other words, the partition on X is given by:

$$X = \{0,1\} \cup (\bigcup_{x \in (0,1)} \{x\})$$

The quotient space seems "glue" the endpoints of the interval [0,1] together, shown in the figure below:



It is intuitive that the constructed quotient space should be homeomorphic to a circle $S^1.$ We will give a formal proof on this fact.

Proposition 6.3 Let *X* and *Z* be topological spaces, and \sim an equivalence relation on *X*. Let $g: X / \sim \to Z$ be a function, and $p: X \to X / \sim$ is a projection mapping The mapping *g* is continuous if and only if $g \circ p: X \to Z$ is continuous.

- *Proof.* 1. *Necessity*. Suppose that *g* is continuous. It's clear that *p* is continuos, i.e, $g \circ p : X \to Z$ is continuous.
 - 2. *Sufficiency*. Suppose that $g \circ p : X \to Z$ is continuous. Given any open U in Z, we imply $(g \circ p)^{-1}(U) = p^{-1}g^{-1}(U)$ is open in X. By definition of the quotient topology, we imply $g^{-1}(U)$ is open in X/\sim . Therefore, g is continuous.

This useful lemma can be generalized into the case for generlized canonical projection mapping, called quotient mapping.

Definition 6.4 [Quotient mapping] A map $p: X \to Y$ between topological spaces is a **quotient mapping** if

- 1. p is surjective; and
- 2. *p* is continuous;
- 3. For any $U \subseteq Y$ such that $p^{-1}(U)$ is open in X, we imply U is open in Y.

The canonical projection map is clearly a quotient map. Actually, a stronger version of proposition (6.3) follows:

Proposition 6.4 Suppose that $p : X \to Y$ is a quotient map and that $g : Y \to Z$ is any mapping to another space *Z*. Then *g* is continuous iff $g \circ p$ is continuous.

Proof. The proof follows similarly as in proposition (6.3).

Now we give a formal proof of the conclusion in the example (6.5):

Proof. Define the mapping

$$f: [0,1] \to S^1$$

with $t \mapsto (\cos 2\pi t, \sin 2\pi t)$.

Since f(0) = f(1), the function *f* induces a well-defined function

$$g: [0,1]/ \sim \to S^1$$

with $[t] \mapsto f(t)$

such that $f = g \circ p$, where p denotes the canonical projection mapping. Note that f is continuous. By proposition (6.3), we imply g is continuous. Furthermore,

- 1. Since [0,1] is compact and *p* is continuous, we imply $p([0,1]) = [0,1] / \sim$ is compact
- 2. S^1 is Hausdorff
- 3. *g* is a bijection

By applying theorem(5.3), we conclude that *g* is a homeomorphism, i.e., $[0,1]/\sim$ and *S*¹ are homeomorphic.

The argument in the proof can be generalized into the proposition below:

Proposition 6.5 Let $f : X \to Y$ be a surjective continuous mapping between topologcial spaces. Let \sim be the equivalence relation on X defined by the partition $\{f^{-1}(y) \mid y \in Y\}$ (i.e., f(x) = (x') iff $x \sim x'$). If X is compact and Y is Hausdorff, then X / \sim and Y are homeomorphic.

R The proposition (6.5) is a pattern of argument we should use several times. In order to show X / \sim and Y are homeomorphic, we should think up a surjective continuous mapping $f : X \to Y$ "with respect to the identifications", i.e., $f(x_1) = f(x_2)$ whenever $x_1 \sim x_2$. Therefore f will induce a well-defined function $g : X / \sim \to Y$ such that $f = g \circ f$. Then checking the conditions in theorem(5.3) leads to the desired results. Torus. We now study the torus in more detail.

- 1. Consider $X = [0,1] \times [0,1]$ and define $(s_1,t_1) \sim (s_2,t_2)$ if one of the following holds:
 - $s_1 = s_2$ and $t_1 = t_2$;
 - $\{s_1, s_2\} = \{0, 1\}, t_1 = t_2;$
 - $\{t_1, t_2\} = \{0, 1\}$ and $s_1 = s_2$;
 - $\{s_1, s_2\} = \{0, 1\}, \{t_1, t_2\} = \{0, 1\}$

The corresponding quotient space $([0,1] \times [0,1]) / \sim$ is hoemomorphic to the 2-dimension torus \mathbb{T}^2 .

Proof. Define the mapping $f : [0,1] \times [0,1] \rightarrow \mathbb{T}^2$ as $(t_1,t_2) \mapsto (e^{2\pi i t_1},e^{2\pi i t_2})$.

- (a) *f* is surjective, which also implies $\mathbb{T}^2 = f([0,1] \times [0,1])$ is compact.
- (b) \mathbb{T}^2 is Hausdorff
- (c) It's clear that $(s_1, t_1) \sim (s_2, t_2)$ implies $f(s_1, t_1) = f(s_2, t_2)$. Conversely, suppose

$$e^{2\pi i s_1} = e^{2\pi i s_2}, \quad e^{2\pi i t_1} = e^{2\pi i t_2}$$

By the familiar property of e^{ix} , we imply either $t_1 = t_2$ or $\{t_1, t_2\} = \{0, 1\}$; and either $s_1 = s_2$ or $\{s_1, s_2\} = \{0, 1\}$

By applying proposition (6.5), we conclude that $([0,1] \times [0,1]) / \sim$ is homeomorphic to \mathbb{T}^2 .

- 2. Consider the closed disk $\mathbb{D}^2 = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \leq 1\}$, and defube $(x_1, y_1) \sim (x_2, y_2)$ if one of the following holds:
 - $x_1 = x_2$ and $y_1 = y_2$;
 - (x_1, y_1) and (x_2, y_2) are in the boundary circle \mathbb{S}^1

The corresponding quotient space \mathbb{D}^2 / \sim is hoemomorphic to the 2-dimension sphere $\mathbb{S}^2 = \{(x, y, z) \mid x^2 + y^2 + z^2 = 1\}.$ *Proof.* Define the mapping

$$f: \mathbb{D}^{2} \to \mathbb{S}^{2}$$

with $(0,0) \mapsto (0,0,1)$
 $(x,y) \mapsto \left(\frac{x}{\sqrt{x^{2}+y^{2}}}\sin(\pi\sqrt{x^{2}+y^{2}}), \frac{y}{\sqrt{x^{2}+y^{2}}}\sin(\pi\sqrt{x^{2}+y^{2}}), \cos(\pi\sqrt{x^{2}+y^{2}})\right)$

It's easy to check the conditions in proposition (6.5), and we conclude that \mathbb{D}^2/\sim is hoemomorphic to \mathbb{S}^2