6.3. Monday for MAT4002

6.3.1. Quotient Topology

Now given a topologcal space X and an equivalence relation ~ on it, our goal is to

construct a topology on the space X/ ~.
Proposition 6.1  Suppose (X,7T) is a topological space, and ~ is an equivalene relation

on X. Define the canonical projection map:

p: X—X/~

with  x — [x]

which assigns each point x € X into the equivalence class [x]. Then define a family of

subsets 7 on X/ ~ by:
UCX/~isin T if p 1 (U)isin T

Then 7 is a topology for X/ ~, called the quotient topology, and (X/ ~,T) is called

the quotient space, and p: X — X/ ~ is called the natural map.

Proof. 1. p7Y(X/~)=X€T and p (@) =@ € T, which implies X/ ~€ T and
oeT.
2. Suppose that U,V € T, then we imply

p Y ),p ! (V) eT = p X UNV)eT,

ie, UNVe T.

3. Following the similar argument in (2), and the relation
-1 7.\ — ~1/(7]
4 (Uuz’) =Ur (W),

we conclude that T is closed under countably union.
The proof is complete. |

182



1. The proposition (6.1) claims that U is open in X/ ~ iff p~1(U) is open
in X. The general question is that, does p(U) is open in X/ ~, given that
U is open in X? This may not necessarily hold. (See example (6.4)) In
general p~1(p(U)) is strictly larger than U, and may not be necessarily
open in X, even when U is open.

2. By definition, we can show that p is continuous.

To fill the gap on the question shown in the remark, we consider the notion of the

open mapping;:

Definition 6.3 [Open Mapping| A function f : X — Y between two topological spaces is

an open mapping if for each open U in X, f(U) is open in Y. .

r) From the remark above, we can see that:

1. Not every continuous mapping is an open mapping

2. The canonical projection mapping p is not necessarily be an open map-

ping.

= Example 6.4 1. The mapping p: [0,1] x [0,1] — ([0,1] x [0,1])/ ~ sending the
square to the Mobius band M is not an open mapping:
Consider the open ball U = By,,((0,0)) in [0,1] x [0,1]. Note that p(U) is open in
M iff p~Y(p(U)) is open in [0,1] x [0,1]. We can calculate p~!(p(U)) explicitly:

pH(p(U))=UU{(Ly)|1/2<y <1},

which is not open.
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6.3.2. Properties in quotient spaces

6.3.2.1. Closedness on X/ ~

Proposition 6.2 A subset V is closed in the quotient space X/ ~ iff p!(V) is closed in

X, where p: X — X/ ~ denotes the canonical projection mapping.

Proof. 1t follows from the fact that

p (X )\ V) =X\ p (V)

6.3.2.2. Isomorphism on X/ ~

The quotient space can be used to study other type of spaces:

» Example 6.5 Consider X = [0,1]. We define x1 ~ x; if:

x1=0,x=1, or x1=1,x=0

In other words, the partition on X is given by:

x={013u( U {x}

x€(0,1)

The quotient space seems “glue” the endpoints of the interval [0,1] together, shown in the

figure below:

glue
.+ (H—O
0
It is intuitive that the constructed quotient space should be homeomorphic to a circle

S!. We will give a formal proof on this fact. .
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Proposition 6.3 Let X and Z be topological spaces, and ~ an equivalence relation
on X. Let g: X/ ~— Z be a function, and p : X — X/ ~ is a projection mapping The

mapping g is continuous if and only if go p: X — Z is continuous.

Proof. 1. Necessity. Suppose that g is continuous. It’s clear that p is continuos, i.e,
gop: X — Zis continuous.

2. Sufficiency. Suppose that go p: X — Z is continuous. Given any open U in Z,

we imply (gop) 1 (U) = p~tg~1(U) is open in X. By definition of the quotient

topology, we imply ¢~1(U) is open in X/ ~. Therefore, g is continuous.

) This useful lemma can be generalized into the case for generlized canonical

projection mapping, called quotient mapping.

Definition 6.4 [Quotient mapping] A map p: X — Y between topological

spaces is a quotient mapping if

1. p is surjective; and
2. p is continuous;

3. For any U C Y such that p~1(U) is open in X, we imply U is open in Y.

The canonical projection map is clearly a quotient map. Actually, a stronger

version of proposition (6.3) follows:

Proposition 6.4 Suppose that p: X — Y is a quotient map and that g: Y — Z is

any mapping to another space Z. Then ¢ is continuous iff ¢ o p is continuous.
y mapping p 8 gop

Proof. The proof follows similarly as in proposition (6.3). |

Now we give a formal proof of the conclusion in the example (6.5):
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Proof. Define the mapping

f:  [0,1] =St

with  t+ (cos27t,sin27tt).

Since f(0) = f(1), the function f induces a well-defined function

g [0,1]/ ~— S!
with [t] — f(¢)

such that f = g o p, where p denotes the canonical projection mapping. Note that f is

continuous. By proposition (6.3), we imply g is continuous. Furthermore,

1. Since [0,1] is compact and p is continuous, we imply p([0,1]) = [0,1]/ ~ is
compact
2. S! is Hausdorff

3. g is a bijection

By applying theorem(5.3), we conclude that g is a homeomorphism, i.e., [0,1]/ ~ and

S! are homeomorphic.

The argument in the proof can be generalized into the proposition below:

Proposition 6.5 Let f : X — Y be a surjective continuous mapping between topologcial
spaces. Let ~ be the equivalence relation on X defined by the partition {f~!(y) |y € Y}
(i.e., f(x) = (') iff x ~ ). If X is compact and Y is Hausdorff, then X/ ~ and Y are

homeomorphic.

r) The proposition (6.5) is a pattern of argument we should use several times.
In order to show X/ ~ and Y are homeomorphic, we should think up a
surjective continuous mapping f : X — Y “with respect to the identifications”,
i.e., f(x1) = f(x2) whenever x; ~ x,. Therefore f will induce a well-defined
function g : X/ ~— Y such that f = g o f. Then checking the conditions in

theorem(5.3) leads to the desired results.
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Torus. We now study the torus in more detail.

1. Consider X = [0,1] x [0,1] and define (s1,t1) ~ (s2,t2) if one of the following
holds:

e s1 =35y and t; = fy;

o {s1,52} ={0,1}, t1 =t3;

o {t1,t} ={0,1} and s1 = sp;

o {s1,52} ={0,1}, {1, 12} = {0,1}

The corresponding quotient space ([0,1] x [0,1])/ ~ is hoemomorhpic to the

2-dimension torus TZ2.

Proof. Define the mapping f : [0,1] x [0,1] — T? as (t;,t2) > (e2h,e?7it2).

(a) f is surjective, which also implies T2 = f([0,1] x [0,1]) is compact.

(b) T? is Hausdorff

(c) It’s clear that (s1,t1) ~ (s, t2) implies f(s1,t1) = f(s2,t2). Conversely, sup-
pose

ezm'51 — eZm'szl eZm’tl — eZm’tz
By the familiar property of ¢”*, we imply either t; =t or {t,to} = {0,1};
and either s; = s; or {s1,s5} = {0,1}
By applying proposition (6.5), we conclude that ([0,1] x [0,1])/ ~ is homeomor-
phic to T2. |
2. Consider the closed disk D? = {(x,y) € R? | x? +y*> < 1}, and defube (x1,y1) ~
(x2,y2) if one of the following holds:
e x1 =x2and y1 =y»;
e (x1,y1) and (x2,12) are in the boundary circle S

The corresponding quotient space ID?/ ~ is hoemomorhpic to the 2-dimension
sphere $2 = {(x,y,z) | x> + y* + 22 = 1}.
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Proof. Define the mapping

f D? — &2
with (0,0) — (0,0,1)

(x,y) — (\/X;‘Tyzsin(n\/xz +y2),\/ﬁsin(7ﬁ/x2 +y2),cos(7t+/x2 +y2))

It’s easy to check the conditions in proposition (6.5), and we conclude that ID?/ ~

is hoemomorhpic to S? u
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