
5.6. Wednesday for MAT4002

5.6.1. Remarks on Compactness

Theorem 5.5 X is compact, Y is Hausdorff, f : X ! Y is continuous and bijective.

Then X is homeomorphic to Y

Corollary 5.3 If X is compact, Y is Hausdorff, f : X ! Y is injective and continous, then

f : X ! f (X) is homeomorphisc.

⌅ Example 5.7 Here we give another proof for the fact that S1 ⇥ S1
is homeomorphic to

donut. Construct the mapping

f : S1 ⇥ S1 ! R
3

with (eiq
, eif) 7! ((R + r cosq)cosf, (R + r cosq)sinf,r sinq) (R > r > 0)

Note that:

• X = S1 ⇥ S1
is compact, R

3
is Hausdorff;

• f is continuous and injective.

• f (S1 ⇥ S1) is a “donut”.

Therefore, we conclude that S1 ⇥ S1
is homeomorphic to donut in R

3
. ⌅

Definition 5.6 [Sequential Compactness] A topological space X is sequentially compact

if every sequence in X has a convergent sub-sequence. ⌅

In R
n
, the compactness is equivalent to sequential compactness. The same goes for

any metric space (X,d). (Check notes for MAT3006)

However, compactness and sequential compactness is different for topological

spaces in general.
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5.6.2. Quotient Spaces
Motivation. Just like product space and disjoint union, we give another way to

construct new topological spaces from some old ones. This new way of construction is

by gluing some special pieces from old topological spaces together.

Idea. Let X = [0,1]⇥ [0,1] (just like a paper on a plane), we want to glue the leftmost

edge with the rightmost edge to form a cylinder Y1, as shown below:

If we give a half-twist to the strip before glue the ends together, we will get the

Moebius stripe Y2 shown below:

Interestingly, the first topology Y1 has two sides, while the second has only one

side.

5.6.2.1. Equivalence Relations and partitions

Definition 5.7 [Equivalence Relation] The equivalence relation on a set X is a relation

⇠ such that

1. (Reflexive): x ⇠ x,8x 2 X

2. (Symmetric): x ⇠ y implies y ⇠ x

3. (Transitive): x ⇠ y and y ⇠ z implies x ⇠ z.

⌅
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⌅ Example 5.8 1. Let X = V be a vector space, and W  V be a vector subspace.

Define vvv1 ⇠ vvv2 if vvv1 � vvv2 2 W.

(The well-definedness is left as exercise).

2. (Mobius Stripe): Let X = [0,1]⇥ [0,1]. We define (x1,y1) ⇠ (x2,y2) if

• x1 = x2,y1 = y2; (e.g., (0.5,0.6) ⇠ (0.6,0.5)) or

• x1 = 0, x2 = 1, and y1 = 1 � y2 (e.g., (0,1/4) ⇠ (1,3/4))

• x1 = 1, x2 = 0, and y1 = 1 � y2 (e.g., (1,3/4) ⇠ (0,1/4))

⌅

Definition 5.8 [Partition] Let X be a nonempty set. A partition P = {pi | i 2 I} of X

is a collection of subsets such that

1. Pi ✓ X is non-empty

2. Pi \ Pj = ∆ if i 6= j

3.
S

i2I Pi = X

⌅

R Given a partition P , we can define an equivalence relation ⇠ on X by setting

x ⇠ y whenever x,y 2 pi, for some i 2 I

For example, if X = [0,1]⇥ [0,1], then

X = {(x,y)}x2(0,1),y2[0,1] [ {(1,y), (0,1 � y)}y2[0,1]

gives a partition on X. This gives the same equivalence relation as in part (2)

in example (5.8).

Conversely, given an equivalence relation ⇠, we could form a corresponding partition

of X. This kind of partition is called the equivalence class:
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Definition 5.9 [Equivalence Class] Let X be a set with equivalence relation ⇠. The

equivalence class of an element x 2 X is

[x] := {y 2 X | x ⇠ y}.

⌅

Proposition 5.8 The collection of all [x] in X/ ⇠ gives a partition on X.

Consider the equivalence class defined in part (1) in example (5.8). The equivalence

class has the form

[vvv] = {uuu 2 V | vvv � uuu 2 W} := vvv + W.

Therefore, the equivalence class is a generalization of the coset in linear algebra.

Similarly, we define the set of generalized cosets as quotient space.

Definition 5.10 The collection of all equivalence classes is called the quotient space,

denoted as X/ ⇠, i.e.,

X/ ⇠= {[x] | x 2 X}.

⌅

⌅ Example 5.9 1. Consider part (1) in example (5.8) again. The quotient space V/ ⇠

reduces to the V/W in linear algebra:

V/ ⇠= {[vvv] | vvv 2 V} = {vvv + W | vvv 2 V} = V/W.

2. Consider part (2) in example (5.8) again. Then X/ ⇠ essentially forms the Mobius

band, e.g.,

[(1/2,1/2)] = {x | (1/2,1/2) ⇠ x} = {(1/2,1/2)}

[(1,3/4)] = {x | x ⇠ (1,3/4)} = {(1,3/4), (0,1/4)}
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⌅

⌅ Example 5.10 Consider X = [0,1] t [0,1], i.e.,

X = ([0,1]⇥ {0}) [ ([0,1]⇥ {1})

Take a partition on X by

{(a,0)}0a<1 [ {(b,1)}0<b1 [ {(1,0), (0,1)}

As a result, the corresponding quotient space is plotted below:

⌅

⌅ Example 5.11 Comes from X = [0,1]⇥ [0,1] with partition

{(a,b)}0<a<1;0<b<1 [ {(x,0), (1 � x,1)}0x1 [ {(0,y), (1,1 � y)}0<y<1

The corresponding quotient space is plotted below:

⌅
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Proposition 5.9 Let (X,T ) be topological space, with the equivalence relation. Define

the canonical projection map

p : X ! X/ ⇠

with x 7! [x]

Define a collection of subsets T̃ on X/ ⇠ by:

U ✓ X/ ⇠ is in T̃ if p�1(U) is in T .

Then T̃ is a topology for X/ ⇠, called quotient topology.
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