4.6. Wednesday for MAT 4002

There will be a quiz on Monday.
Reviewing.

o Connectedness / Path-Connectedness

4.6.1. Remark on Connectedness

Proposition 4.14  All path connected spaces X are connected.

Proof. Fix any x € X, for all y € X, there exists a continuous mapping p,, : [0,1] = X

such that
py(0) =x, py(1)=y.

Consider C, = p,([0,1]), which is connected, due to proposition (4.9).
Note that {C; },cx is a collection of connected sets, and for any v,y € X, C, N C,s >

{x} is non-empty. Applying proposition (4.10), we imply X = U,cxC, is connected. H
n Example 4.5 1. Exercise: if A C B C A, then A is connected implies B is connected.

(Hint: UNA=Q implies UNA =Q.)

Proof. Suppose B is not connected, i.e., for any open U,V such that BC UUV
and (UNV)NB=0@, weimply UNB # @ and V N B # @, and therefore

UNA#Q, VNA#QD
which implies
UNA#®, VNA#O

which contradicts to the connectedness of A. |

2. The converse of proposition (4.14) may not be necessarily true. Consider the so-called

Topologist’'s bomb example:
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Figure 4.1: Connected space X but not path-connected

Here we construct a connected space X C IR? but not path-connected shown in
Fig (4.1), i.e., the union of the interval [0,1] together with vertical line segments

from (1/n,0) to (1/n,1) and the single point (0,1).

X =([0,1] x {0}) U |J ({1/n} x [0,1]) U (0,1).

n>1

(a) Firstly, X is not path-connected. We show that there is no path in X links
(0,1) to any other point, i.e., for continuous mapping p : [0,1] — X with
p(0) = (0,1), we may imply p(t) = (0,1) for any ¢.

Define
A={te[01]]p(t) = O,1)}.

We claim that A = [0,1], i.e., suffices to show A is both open and closed in

[0,1]:

i. The set A= p~1({0,1}) is nonempty and closed, since the pre-image of

a closed set is closed as well.
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ii. The set A is open: choose ty € A. By continuity of p, there exists § > 0

such that
1
lp(t) = (O, DIl = l[p(t) = p(bo)l < 5, t€[0,1]N (to — 5,0 +9).

Since there is no point on the x-axis with the distance 1/2 to the point
(0,1), we imply p(t) is not on the x-axis when t € [0,1] N (to — J,tp + J).
Therefore, the x-coordinate of p(t) is either 0 or of the form 1/n.

It suffices to show the open interval I:=[0,1] N (to — J,fp+ ) is in
A. Define the composite function f =xop:I — R, where the mapping
x:R?> — R is defined as (a,b) — a. Note that I is connected, we imply
f(I) is connected, and f(I) belongs to {0} U {1/n}.

The only nonempty connected subset of {0} U {1/n} is a single point
(left as exercise), and therefore f(I) is a single point. Since f(ty) = 0,we

imply f(I) ={0}, i.e., I C A. Therefore A is open.

4.6.2. Completeness
Compact set in X is used to generalize “closed and bounded” in R".

Definition 4.11 Let (X, 7)) be a topological space. A collection & = {U; | i € I} of open

sets is an open cover of X if

X=u;

iel

A subcover of U is a subfamily
U={Uljejy, JjcI

such that U Uj = X.
If J has finitely many elements, we say U’ is a finite subcover of X.

We say X is compact if any open cover of X has a finite subcover. n
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R) If AC Xhasasubspace topology. then A is compact iff for any open collection
of open sets (in X) {U;} such that A C [J;c; U;, there exists a fintie subcover
A C Ui Uy,

Proposition 4.15 Let X be a topological space. The followings are equivalent:

1. The space X is compact

2. If {V;|i € I} is a collection of closed subsets in X such that

ﬂ Vi # @, for all finite ] C I,
j€]

then ﬂieIVz‘ 7& Q.

Compactness is an intrisical property, i.e., we do not need to worry about which

underlying space for this definition.

m Example 4.6 1. X CIR" is compact iff X is closed and bounded. (Heine-Borel)

2. Let K CIR"” be compact, then define the set
C(K) = {all continuous mapping f : K — R}

Note that the do, metric associated with C(K), say ||f|lc = sup;cx f(k), is well-
defined.
Under the metric space (C(K),d ), any J C C(K) is compact, if and only if J is
closed, bounded, and equi-continuous. (Aresul-Ascoli)

Therefore, we can see that the compactness is not equivalent to the closedness together

with boundedness. "

Proposition 4.16  Let X be a compact space, then all closed subset A C X are compact.

Proof. Let {V;|i € I} be a collection of closed subsets in A such that
NjejVi # @, for any finite | C I.

As A is closed in X, we imply V; is closed in X.
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Due to the compactness of X and proposition (4.15), we imply
NierVi 7’é %
By the reverse direction of proposition (4.15), we imply A is compact. |

r) Now consider the reverse direction of proposition (4.16), i.e., are all compact

subsets K C X closed in X?

In general, the converse does not hold. Note that K = {x} is compact for any

topology X. However, there are some topologies such that {x} is closed.

In order to obtain the converse of proposition (4.16), we need to obtain another

separation axiom:

Proposition 4.17  Let X be Hausdorff, K C X be compact, and x € X \ K. Then there

exists open U,V C X such that UNV = and

unv=9, KCcUu, xeV.

Proof. Let k € K, then by Hausdorffness, there exists open Uy 3 k, Vi 3 x such that
U N Vi = @. Therefore, {Uy}rex forms an open cover of K. By compactness of K,

{Uy, }*, covers K. Constructing the set
U:=U, Uy, V= Nizy Vi,

gives the desired result. |

By making use of this separation axiom, we obtain the converse of proposi-

tion (4.16):

I Corollary 4.3  All compact K in Hausdorff X is closed.

Proof. For Vx € X \ K, by proposition (4.17) there exists open V such that x € V C X\ K,
and therefore X \ K is open. |
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