
4.6. Wednesday for MAT4002
There will be a quiz on Monday.

Reviewing.

• Connectedness / Path-Connectedness

4.6.1. Remark on Connectedness
Proposition 4.14 All path connected spaces X are connected.

Proof. Fix any x 2 X, for all y 2 X, there exists a continuous mapping py : [0,1]! X

such that

py(0) = x, py(1) = y.

Consider Cy = py([0,1]), which is connected, due to proposition (4.9).

Note that {Cy}y2X is a collection of connected sets, and for any y,y0 2 X, Cy \ Cy0 3

{x} is non-empty. Applying proposition (4.10), we imply X = [y2XCy is connected. ⌅

⌅ Example 4.5 1. Exercise: if A ⇢ B ⇢ A, then A is connected implies B is connected.

(Hint: U \ A = ∆ implies U \ A = ∆.)

Proof. Suppose B is not connected, i.e., for any open U,V such that B ✓ U [ V

and (U \ V) \ B = ∆, we imply U \ B 6= ∆ and V \ B 6= ∆, and therefore

U \ A 6= ∆, V \ A 6= ∆

which implies

U \ A 6= ∆, V \ A 6= ∆

which contradicts to the connectedness of A. ⌅

2. The converse of proposition (4.14) may not be necessarily true. Consider the so-called

Topologist’s bomb example:
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Figure 4.1: Connected space X but not path-connected

Here we construct a connected space X ✓ R
2

but not path-connected shown in

Fig (4.1), i.e., the union of the interval [0,1] together with vertical line segments

from (1/n,0) to (1/n,1) and the single point (0,1).

X = ([0,1]⇥ {0}) [
[

n�1

({1/n}⇥ [0,1]) [ (0,1).

(a) Firstly, X is not path-connected. We show that there is no path in X links

(0,1) to any other point, i.e., for continuous mapping p : [0,1] ! X with

p(0) = (0,1), we may imply p(t) = (0,1) for any t.

Define

A = {t 2 [0,1] | p(t) = (0,1)}.

We claim that A = [0,1], i.e., suffices to show A is both open and closed in

[0,1]:

i. The set A = p�1({0,1}) is nonempty and closed, since the pre-image of

a closed set is closed as well.
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ii. The set A is open: choose t0 2 A. By continuity of p, there exists d > 0

such that

kp(t)� (0,1)k = kp(t)� p(t0)k <
1

2
, t 2 [0,1] \ (t0 � d, t0 + d).

Since there is no point on the x-axis with the distance 1/2 to the point

(0,1), we imply p(t) is not on the x-axis when t 2 [0,1] \ (t0 � d, t0 + d).

Therefore, the x-coordinate of p(t) is either 0 or of the form 1/n.

It suffices to show the open interval I := [0,1] \ (t0 � d, t0 + d) is in

A. Define the composite function f = x � p : I ! R , where the mapping

x : R
2 ! R is defined as (a,b) 7! a. Note that I is connected, we imply

f (I) is connected, and f (I) belongs to {0} [ {1/n}.

The only nonempty connected subset of {0}[ {1/n} is a single point

(left as exercise), and therefore f (I) is a single point. Since f (t0) = 0,we

imply f (I) = {0}, i.e., I ✓ A. Therefore A is open.

⌅

4.6.2. Completeness

Compact set in X is used to generalize “closed and bounded” in R
n
.

Definition 4.11 Let (X,T ) be a topological space. A collection U = {Ui | i 2 I} of open

sets is an open cover of X if

X =
[

i2I
Ui

A subcover of U is a subfamily

U 0 = {Uj | j 2 J}, J ✓ I

such that
S

j2J Uj = X.

If J has finitely many elements, we say U 0
is a finite subcover of X.

We say X is compact if any open cover of X has a finite subcover. ⌅
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R If A ✓ X has a subspace topology. then A is compact iff for any open collection

of open sets (in X) {Ui} such that A ✓ S
i2I Ui, there exists a fintie subcover

A ✓ Sn
k=1

Uik .

Proposition 4.15 Let X be a topological space. The followings are equivalent:

1. The space X is compact

2. If {Vi | i 2 I} is a collection of closed subsets in X such that

\

j2J
Vj 6= ∆, for all finite J ✓ I,

then \i2IVi 6= ∆.

Compactness is an intrisical property, i.e., we do not need to worry about which

underlying space for this definition.

⌅ Example 4.6 1. X ✓ R
n

is compact iff X is closed and bounded. (Heine-Borel)

2. Let K ✓ R
n

be compact, then define the set

C(K) = {all continuous mapping f : K ! R}

Note that the d• metric associated with C(K), say k f k• = supk2K f (k), is well-

defined.

Under the metric space (C(K),d•), any J ✓ C(K) is compact, if and only if J is

closed, bounded, and equi-continuous. (Aresul-Ascoli)

Therefore, we can see that the compactness is not equivalent to the closedness together

with boundedness. ⌅

Proposition 4.16 Let X be a compact space, then all closed subset A ✓ X are compact.

Proof. Let {Vi | i 2 I} be a collection of closed subsets in A such that

\j2JVj 6= ∆, for any finite J ✓ I.

As A is closed in X, we imply Vj is closed in X.
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Due to the compactness of X and proposition (4.15), we imply

\i2IVi 6= ∆

By the reverse direction of proposition (4.15), we imply A is compact. ⌅

R Now consider the reverse direction of proposition (4.16), i.e., are all compact

subsets K ✓ X closed in X?

In general, the converse does not hold. Note that K = {x} is compact for any

topology X. However, there are some topologies such that {x} is closed.

In order to obtain the converse of proposition (4.16), we need to obtain another

separation axiom:

Proposition 4.17 Let X be Hausdorff, K ✓ X be compact, and x 2 X \ K. Then there

exists open U,V ✓ X such that U \ V = ∆ and

U \ V = ∆, K ✓ U, x 2 V.

Proof. Let k 2 K, then by Hausdorffness, there exists open Uk 3 k,Vk 3 x such that

Uk \ Vk = ∆. Therefore, {Uk}k2K forms an open cover of K. By compactness of K,

{Uki}n
i=1

covers K. Constructing the set

U :=
Sn

i=1
Uki , V =

Tn
i=1

Vki

gives the desired result. ⌅

By making use of this separation axiom, we obtain the converse of proposi-

tion (4.16):

Corollary 4.3 All compact K in Hausdorff X is closed.

Proof. For 8x 2 X \K, by proposition (4.17) there exists open V such that x 2 V ✓ X \K,

and therefore X \ K is open. ⌅
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