4.3. Monday for MAT4002

There will be a quiz next Monday. The scope is everything before CNY holiday. There will be one question with four parts for 40 minutes.

4.3.1. Hausdorffness

Reviewing. A topological space (X, \mathcal{T}) is said to be **Hausdorff** (or satisfy the second separtion property), if given any distinct points $x, y \in X$, there exist disjoint open sets U, V such that $U \ni x$ and $V \ni y$.

Proposition 4.5 If the topological space (X, \mathcal{T}) is Hausdorff, then all sequences $\{x_n\}$ in *X* has at most one limit.

Proof. Suppose on the contrary that

$$\{x_n\} \rightarrow a, \{x_n\} \rightarrow b, \text{ with } a \neq b$$

By separation property, there exists $U, V \in \mathcal{T}$ and $U \cap V = \emptyset$ such that $U \ni a$ and $V \ni b$.

By tje openness of U, there exists N such that $\{x_N, x_{N+1}, ...\} \subseteq U$, since $\{x_n\} \rightarrow a \in U$. Similarly, there exists M such that $\{x_M, x_{M+1}, ...\} \subseteq V$. Take $K = \max\{M, N\} + 1$, then $\emptyset \neq U \cap V \ni x_K$, which is a contradiction.

Proposition 4.6 Let *X*, *Y* be Hausdorff spaces. Then $X \times Y$ is Hausdorff with product topology.

Proof. Suppose that $(x_1, y_1) \neq (x_2, y_2)$ in $X \times Y$. Then $x_1 \neq x_2$ or $y_1 \neq y_2$. w.l.o.g., assume that $x_1 \neq x_2$, then there exists U, V open in X such that $x_1 \in U, x_2 \in V$ with $U \cap V = \emptyset$.

Therefore, we imply $(U \times Y), (V \times Y) \in \mathcal{T}_{X \times Y}$, and

$$(U \times Y) \cap (V \times Y) = (U \cap V) \cap Y = \emptyset$$

with $(x_1, y_1) \in U \times Y$, $(x_2, y_2) \in V \times Y$, i.e., $X \times Y$ is Hausdorff with product topology.

The same argument applies if the second separation property is replaced by first separation property.

Proposition 4.7 If $f : X \to Y$ is an injective continuous mapping, then *Y* is Hausdorff implies *X* is Hausdorff.

Proof. Suppose that *Y* satisfies the second separation property. For given $a \neq b$ in *X*, we imply $f(a) \neq f(b)$ in *Y*. Therefore, there exists $U \ni f(a), V \ni f(b)$ with $U \cap V = \emptyset$. It follows that

$$a \in f^{-1}(U), b \in f^{-1}(V), f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = \emptyset,$$

i.e., X is Hausdorff.

Corollary 4.1 If $f: X \to Y$ is homeomorphic, then X is Hausdorff iff Y is Hausdorff, i.e., Hausdorffness is a topological property (i.e., a property that is preserved under homeomorphism).

4.3.2. Connectedness

Definition 4.4 [Connected] The topological space (X, \mathcal{T}) is **disconnected** if there are open $U, V \in \mathcal{T}$ such that

$$U \neq \emptyset, V \neq \emptyset, \quad U \cap V = \emptyset, \quad U \cup V = X.$$
 (4.4)

If no such $U, V \in \mathcal{T}$ exist, then X is **connected**.

Proposition 4.8 Let (X, \mathcal{T}) be topological spaces. TFAE (i.e., the followings are equivalent):

- 1. X is connected
- 2. The **only** subset of *X* which are both open and closed are \emptyset and *X*
- 3. Any continuous function $f : X \to \{0,1\}$ ($\{0,1\}$ is equipped with discrete topology) is a constant function.

Proof. (1) implies (2): Suppose that $U \subseteq X$ is both open and closed. Then $U, X \setminus U$ are both open and disjoint, and $U \cup (X \setminus U) = X$. By connectedness, either $U = \emptyset$ or $X \setminus U = \emptyset$. Therefore, $U = \emptyset$ or X.

(2) implies (3): Note that $U = f^{-1}(\{0\})$ and $V = f^{-1}(\{1\})$ are open disjoint sets in *X* satisfying $U \cup V = X$. By the connectedness of *X*, either $(U, V) = (X, \emptyset)$ or $(V, U) = (\emptyset, X)$. In either case, we imply *f* is a constant function.

(3) implies (2): Suppose that $U \subseteq X$ is both open and closed. Construct the mapping

$$f(x) = \begin{cases} 0, & x \in U \\ 1, & x \in X \setminus U \end{cases}$$

It's clear that *f* is continuous, and therefore f(x) = 0 or 1. Therefore $U = \emptyset$ or X.

(2) implies (1): Suppose on the contrary that there exists open U, V such that (4.4) holds. By (4.4), we imply $U = X \setminus V$ is closed as well. Since $U \neq \emptyset$ and $U = \emptyset$ or X, we imply U = X, which implies $V = \emptyset$, which is a contradiction.

Corollary 4.2 The interval $[a,b] \subseteq \mathbb{R}$ is connected

Proof. Suppose on the contrary that there exists continuous function $f : [a,b] \rightarrow \{0,1\}$ that takes 2 values. Construct the mapping $\tilde{f} : [a,b] \rightarrow \mathbb{R}$

$$\tilde{f}: [a,b] \xrightarrow{f} \{0,1\} \xrightarrow{i} \mathbb{R}$$

with $\tilde{f} = i \circ f$.

Note that $\{0,1\} \subseteq \mathbb{R}$ denotes the subspace topology, we imply the inclusion mapping $i : \{0,1\} \to \mathbb{R}$ with $s \mapsto s$ is continuous. The composition of continuous mappings is continuous as well, i.e., \tilde{f} is continuous.

Since the function f can take two values, there exists $p,q \in [a,b]$ such that $\tilde{f}(p) = i \circ f(q) = 0$ and $\tilde{f}(q) = i \circ f(q) = 1$. By intermediate value theorem, there exists $r \in [a,b]$ such that $\tilde{f}(r) = i \circ f(r) = 1/2$, which implies $f(r) = \frac{1}{2}$, which is a contradiction.

Definition 4.5 [Connected subset] A non-empty subset $S \subseteq X$ is **connected** if S with the subspace topology is connected

Equivalently, $S \subseteq X$ is connected if, whenever U, V are open in X such that $S \subseteq U \cup V$, and $(U \cap V) \cap S = \emptyset$, one can imply either $U \cap S = \emptyset$ or $V \cap S = \emptyset$.

Proposition 4.9 If $f : X \to Y$ is continuous mapping, and the subset $A \subseteq X$ is connected, then f(A) is connected. In other words, the continuous image of a connected set is connected.

Proof. Suppose that $U, V \subseteq Y$ is open such that

$$f(A) \subseteq U \cup V, \quad (U \cap V) \cap f(A) = \emptyset.$$

Therefore we imply

$$A\subseteq f^{-1}(U)\cup f^{-1}(V), \ (f^{-1}(U)\cap A)\cap (f^{-1}(V)\cap A)=\varnothing$$

By connectedness of *A*, either $f^{-1}(U) \cap A = \emptyset$ or $f^{-1}(V) \cap A = \emptyset$. Therefore, $f(A) \cap U = \emptyset$ or $f(A) \cap V = \emptyset$, i.e., f(A) is connected.

Proposition 4.10 If $\{A_i\}_{i \in I}$ are connnected and $A_i \cap A_j \neq \emptyset$ for $\forall i, j \in I$, then the set $\bigcup_{i \in I} A_i$ is connected.

Proof. Suppose the function $f : \bigcup_{i \in I} A_i \to \{0,1\}$ is a continuous map. Then we imply that its restriction $f|_{A_i} = f \circ i : A_i \to \{0,1\}$ is continuous for all $i \in I$. Thus $f|_{A_i}$ is a constant for all $i \in I$. Due to the non-empty intersection of A_i, A_j for $\forall i, j \in I$, we imply f is constant.

Proposition 4.11 If *X*, *Y* are connnected, then $X \times Y$ is connected using product topology.

Proof. It's clear that $X \times \{y_0\}$ is connected in $X \times Y$ for fixed y_0 ; and $\{x_0\} \times Y$ is connected for fixed x_0 .

Therefore, for fixed $y_0 \in Y$, construct $B = X \times \{y_0\}$ and $C_x = \{x\} \times Y$, which follows that

$$B \cap C_x = \{(x, y_0)\} \neq \emptyset, \forall x \in X \implies B \cup \left\{\bigcup_{x \in X} C_x\right\} = X \times Y \text{ is connected.}$$

Definition 4.6 [Path Connectes] Let (X, \mathcal{T}) be a topological space.

- 1. A path connecting 2 points $x, y \in X$ is a continuous function $\tau : [0,1] \to X$ with $\tau(0) = x, \tau(1) = y.$
- 2. X is path-connected if any 2 points in X can be connected by a path.
- 3. The set $A \subseteq X$ is path-connected, if A sastisfies the condition using subspace topology.

Or equivalently, A is path-connected if for any 2 points in X, there exists a continuous $t : [0,1] \rightarrow X$ with $t(x) \in A$ for any x, connecting the 2 points.