## 3.6. Wednesday for MAT4002

## 3.6.1. Remarks on product space

Reviewing.

• Product Topology: For topological space  $(X, \mathcal{T}_X)$  and  $(Y, \mathcal{Y})$ , define the basis

$$\mathcal{B}_{X\times Y} = \{U \times V \mid U \in \mathcal{T}_X, V \in \mathcal{T}_Y\}$$

and the family of union of subsets in  $\mathcal{B}_{X \times Y}$  forms a product topology.

**Proposition 3.9** a ring torus is homeomorphic to the Cartesian product of two circles, say  $S^1 \times S^1 \cong T$ .

*Proof.* Define a mapping  $f : [0, 2\pi] \times [0, 2\pi] \rightarrow T$  as

$$f(\theta,\phi) = \left( (R + r\cos\theta)\cos\phi, \quad (R + r\cos\theta)\sin\phi, \quad r\sin\theta \right)$$

Define  $i: T \to \mathbb{R}^3$ , we imply

$$i \circ f : [0, 2\pi] \times [0, 2\pi] \to \mathbb{R}^3$$
 is continuous

Therefore we imply  $f : [0, 2\pi] \times [0, 2\pi] \rightarrow T$  is continuous. Together with the condition that

| Į | $f(0,y) = f(2\pi,y)$ |
|---|----------------------|
|   | $f(x,0) = f(x,2\pi)$ |

we imply the function  $f: S^1 \to S^1 \to T$  is continuous. We can also show it is bijective. We can also show  $f^{-1}$  is continuous.

**Proposition 3.10** 1. Let  $X \times Y$  be endowed with product topology. The projection

mappings defined as

$$p_X: X \times Y \to X$$
, with  $p_X(x,y) = x$   
 $p_Y: X \times Y \to Y$ , with  $p_Y(x,y) = y$ 

are continuous.

- 2. (an equivalent definition for product topology) The product topology is the **coarest topology** on  $X \times Y$  such that  $p_X$  and  $p_Y$  are both continuous.
- 3. (an equivalent definition for product topology) Let *Z* be a topological space, then the product topology is the unique topology that the red and the blue line in the diagram commutes:



Figure 3.3: Diagram summarizing the statement (\*)

namely,

the mapping  $F : Z \to X \times Y$  is continuous iff both  $P_X \circ F : Z \to X$  and  $P_Y \circ F : Z \to Y$  are continuous. (\*)

- *Proof.* 1. For any open U, we imply  $p_X^{-1}(U) = U \times Y \in \mathcal{B}_{X \times Y} \subseteq \mathcal{T}_{X \times Y}$ , i.e.,  $p_X^{-1}(U)$  is open. The same goes for  $p_Y$ .
  - 2. It suffices to show any topology  $\mathcal{T}$  that meets the condition in (2) must contain  $\mathcal{T}_{product}$ . We imply that for  $\forall U \in \mathcal{T}_X, V \in \mathcal{T}_Y$ ,

$$\begin{cases} p_X^{-1}(U) = U \times X \in \mathcal{T} \\ p_Y^{-1}(V) = X \times V \in \mathcal{T} \end{cases} \implies (U \times Y) \cap (X \times V) = (U \cap X) \times (Y \cap V) = U \times V \in \mathcal{T}, \end{cases}$$

which implies  $\mathcal{B}_{X \times Y} \subseteq \mathcal{T}$ . Since  $\mathcal{T}$  is closed for union operation on subsets, we

imply  $\mathcal{T}_{\text{product topology}} \subseteq \mathcal{T}$ .

- 3. (a) Firstly show that  $\mathcal{T}_{\text{product}}$  satisfies (\*).
  - For the forward direction, by (1) we imply both *p<sub>X</sub>* ∘ *F* and *p<sub>Y</sub>* ∘ *F* are continuous, since the composition of continuous functions are continuous as well.
  - For the reverse direction, for  $\forall U \times T_X, V \in T_Y$ ,

$$F^{-1}(U \times V) = (p_X \circ F)^{-1}(X) \cap (p_Y \circ F)^{-1}(Y),$$

which is open due to the continuity of  $p_X \circ F$  and  $p_Y \circ F$ .

- (b) Then we show the uniqueness of \$\mathcal{T}\_{product}\$. Let \$\mathcal{T}\$ be another topology \$X \times Y\$ satisfying (\*).
  - Take  $Z = (X \times Y, \mathcal{T})$ , and consider the identity mapping  $F = \text{id} : Z \to Z$ , which is continuous. Therefore  $p_X \circ \text{id}$  and  $p_Y \circ \text{id}$  are continuous, i.e.,  $p_X$  and  $p_Y$  are continuous. By (2) we imply  $\mathcal{T}_{\text{product}} \subseteq \mathcal{T}$ .
  - Take Z = (X × Y, T<sub>product</sub>), and consider the identity mapping F = id : Z → Z. Note that p<sub>X</sub> ∘ F = p<sub>X</sub> and p<sub>Y</sub> ∘ F = p<sub>Y</sub>, which is continuous by (1). Therefore, the identity mapping F : (X × Y, T<sub>product</sub>) → (X × Y, T) is continuous, which implies

$$U = \mathrm{id}^{-1}(U) \subseteq \mathcal{T}_{\mathrm{product}}$$
 for  $\forall U \in \mathcal{T}$ ,

i.e.,  $\mathcal{T} \subseteq \mathcal{T}_{\text{product}}$ .

The proof is complete.

**Definition 3.6** [Disjoint Union] Let  $X \times Y$  be two topological spaces, then the **disjoint** union of X and Y is

$$X \sqcup Y := (X \times \{0\}) \cup (Y \times \{1\})$$

- 1. We define that *U* is open in  $X \sqcup Y$  if
  - (a)  $U \cap (X \times \{0\})$  is open in  $X \times \{0\}$ ; and
  - (b)  $U \cap (Y \times \{1\})$  is open in  $Y \times \{1\}$ .

We also need to show the weill-definedness for this definition.

2. *S* is open in  $X \perp Y$  iff *S* can be expressed as

$$S = (U \times \{0\}) \cup (V \times \{1\})$$

where  $U \subseteq X$  is open and  $V \subseteq Y$  is open.

## 3.6.2. Properties of Topological Spaces

## 3.6.2.1. Hausdorff Property

**Definition 3.7** [First Separation Axiom] A topological space X satisfies the **first separation axiom** if for any two distinct points  $x \neq y \in X$ , there exists open  $U \ni x$  but not including y.

**Proposition 3.11** A topological space *X* has first separation property if and only if for  $\forall x \in X, \{x\}$  is closed in *X*.

*Proof. Sufficiency.* Suppose that  $x \neq y$ , then construct  $U := X \setminus \{y\}$ , which is a open set that contains *x* but not includes *y*.

*Necessity.* Take any  $x \in X$ , then for  $\forall y \neq x$ , there exists  $y \in U_y$  that is open and  $x \notin U_y$ . Thus

$$\{y\}\subseteq U_y\subseteq X\setminus\{x\}$$

which implies

$$igcup_{y\in X\setminus\{x\}}\{y\}\subseteq igcup_{y\in X\setminus\{x\}}U_y\subseteq X\setminus\{x\},$$

i.e.,  $X \setminus \{x\} = \bigcup_{y \in X \setminus \{x\}} U_y$  is open in *X*, i.e.,  $\{x\}$  is closed in *X*.

**Definition 3.8** [Second separation Axiom] A topological space satisfies the **second separation axiom** (or X is Hausdorff) if for all  $x \neq y$  in X, there exists open sets U, Vsuch that

$$x \in U, y \in V, U \cap V = \emptyset$$

**Example 3.13** All metrizable topological spaces are Hausdorff. Suppose d(x,y) = r > 0, then take  $B_{r/2}(x)$  and  $B_{r/2}(y)$ 

• Example 3.14 Note that a topological space that is first separable may not necessarily be second separable:

Consider  $\mathcal{T}_{\text{co-finite}}$ , then X is first separable but not Hausdorff:

Suppose on the contrary that for given  $x \neq y$ , there exists open sets U,V such that  $x \in U, y \in V$ , and

 $U \cap V = \emptyset \implies X = X \setminus (U \cap V) = (X \setminus U) \cup (X \setminus V),$ 

implying that the union of two finite sets equals X, which is infinite, which is a contradiction.