
3.6. Wednesday for MAT4002

3.6.1. Remarks on product space

Reviewing.

• Product Topology: For topological space (X,TX) and (Y,Y), define the basis

BX⇥Y = {U ⇥ V | U 2 TX,V 2 TY}

and the family of union of subsets in BX⇥Y forms a product topology.

Proposition 3.9 a ring torus is homeomorphic to the Cartesian product of two circles,

say S1 ⇥ S1 ⇠= T.

Proof. Define a mapping f : [0,2p]⇥ [0,2p]! T as

f (q,f) =
✓
(R + r cosq)cosf, (R + r cosq)sinf, r sinq

◆

Define i : T ! R
3, we imply

i � f : [0,2p]⇥ [0,2p]! R
3 is continuous

Therefore we imply f : [0,2p]⇥ [0,2p]! T is continuous. Together with the condition

that 8
><

>:

f (0,y) = f (2p,y)

f (x,0) = f (x,2p)

we imply the function f : S1 ! S1 ! T is continuous. We can also show it is bijective.

We can also show f�1 is continuous. ⌅

Proposition 3.10 1. Let X ⇥ Y be endowed with product topology. The projection
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mappings defined as

pX :X ⇥ Y ! X, with pX(x,y) = x

pY :X ⇥ Y ! Y, with pY(x,y) = y

are continuous.

2. (an equivalent definition for product topology) The product topology is the

coarest topology on X ⇥ Y such that pX and pY are both continuous.

3. (an equivalent definition for product topology) Let Z be a topological space, then

the product topology is the unique topology that the red and the blue line in the

diagram commutes:

Figure 3.3: Diagram summarizing the statement (*)

namely,

the mapping F : Z ! X ⇥ Y is continuous iff both PX � F : Z ! X and

PY � F : Z ! Y are continuous. (*)

Proof. 1. For any open U, we imply p�1
X (U) = U ⇥ Y 2 BX⇥Y ✓ TX⇥Y, i.e., p�1

X (U)

is open. The same goes for pY.

2. It suffices to show any topology T that meets the condition in (2) must contain

Tproduct. We imply that for 8U 2 TX,V 2 TY,

8
><

>:

p�1
X (U) = U ⇥ X 2 T

p�1
Y (V) = X ⇥ V 2 T

=) (U ⇥Y)\ (X⇥V) = (U \X)⇥ (Y\V) =U ⇥V 2 T ,

which implies BX⇥Y ✓ T . Since T is closed for union operation on subsets, we
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imply Tproduct topology ✓ T .

3. (a) Firstly show that Tproduct satisfies (*).

• For the forward direction, by (1) we imply both pX � F and pY � F are

continuous, since the composition of continuous functions are continu-

ous as well.

• For the reverse direction, for 8U ⇥ TX,V 2 TY,

F�1(U ⇥ V) = (pX � F)�1(X) \ (pY � F)�1(Y),

which is open due to the continuity of pX � F and pY � F.

(b) Then we show the uniqueness of Tproduct. Let T be another topology X ⇥ Y

satisfying (*).

• Take Z = (X ⇥Y,T ), and consider the identity mapping F = id : Z ! Z,

which is continuous. Therefore pX � id and pY � id are continuous, i.e.,

pX and pY are continuous. By (2) we imply Tproduct ✓ T .

• Take Z = (X ⇥ Y,Tproduct), and consider the identity mapping F = id :

Z ! Z. Note that pX � F = pX and pY � F = pY, which is continuous by

(1). Therefore, the identity mapping F : (X ⇥ Y,Tproduct)! (X ⇥ Y,T )

is continuous, which implies

U = id�1(U) ✓ Tproduct for 8U 2 T ,

i.e., T ✓ Tproduct.

The proof is complete.

⌅

Definition 3.6 [Disjoint Union] Let X ⇥ Y be two topological spaces, then the disjoint

union of X and Y is

X t Y := (X ⇥ {0}) [ (Y ⇥ {1})

⌅

107



R

1. We define that U is open in X t Y if

(a) U \ (X ⇥ {0}) is open in X ⇥ {0}; and

(b) U \ (Y ⇥ {1}) is open in Y ⇥ {1}.

We also need to show the weill-definedness for this definition.

2. S is open in X ? Y iff S can be expressed as

S = (U ⇥ {0}) [ (V ⇥ {1})

where U ✓ X is open and V ✓ Y is open.

3.6.2. Properties of Topological Spaces

3.6.2.1. Hausdorff Property

Definition 3.7 [First Separation Axiom] A topological space X satisfies the first sepa-

ration axiom if for any two distinct points x 6= y 2 X, there exists open U 3 x but not

including y. ⌅

Proposition 3.11 A topological space X has first separation property if and only if for

8x 2 X, {x} is closed in X.

Proof. Sufficiency. Suppose that x 6= y, then construct U := X \ {y}, which is a open set

that contains x but not includes y.

Necessity. Take any x 2 X, then for 8y 6= x, there exists y 2 Uy that is open and

x /2 Uy. Thus

{y} ✓ Uy ✓ X \ {x}

which implies
[

y2X\{x}
{y} ✓

[

y2X\{x}
Uy ✓ X \ {x},

i.e., X \ {x} = S
y2X\{x} Uy is open in X, i.e., {x} is closed in X. ⌅
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Definition 3.8 [Second separation Axiom] A topological space satisfies the second

separation axiom (or X is Hausdorff) if for all x 6= y in X, there exists open sets U,V

such that

x 2 U, y 2 V, U \ V = ∆

⌅

⌅ Example 3.13 All metrizable topological spaces are Hausdorff.

Suppose d(x,y) = r > 0, then take Br/2(x) and Br/2(y) ⌅

⌅ Example 3.14 Note that a topological space that is first separable may not necessarily

be second separable:

Consider Tco-finite, then X is first separable but not Hausdorff:

Suppose on the contrary that for given x 6= y, there exists open sets U,V such that

x 2 U,y 2 V, and

U \ V = ∆ =) X = X \ (U \ V) = (X \ U) [ (X \ V),

implying that the union of two finite sets equals X, which is infinite, which is a contradiction.

⌅
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