
2.6. Wednesday for MAT4002
Reviewing.

1. Interior, Closure:

A = {x | 8U 3 x open,U
\

A 6= ∆}

2. Accumulation points

2.6.1. Remark on Closure

Definition 2.14 [Sequential Closure] Let AS be the set of limits of any convergent

sequence in A, then AS is called the sequential closure of A. ⌅

Definition 2.15 [Accumulation/Cluster Points] The set of accumulation (limit) points is

defined as

A0 = {x | 8U 3 x open , (U \ {x})
\

A 6= ∆}

⌅

R

1. (a) There exists some point in A but not in A0:

A = {1,2,3, . . . ,n, . . .}

Then any point in A is not in A0

(b) There also exists some point in A0 but not in A:

A = { 1
n
| n � 1}

Then the point 0 is in A0 but not in A.

2. The closure A = A
S

A0.

3. The size of the sequentical closure AS is between A and A, i.e., A ✓

AS ✓ A:
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It’s clear that A ✓ AS, since the sequence {an := a} is convergent to a for

8a 2 A.

For all a 2 AS, we have {an}! a. Then for any open U 3 a, there exists

N such that {aN , aN+1, . . .} ✓ U
T

A 6= ∆. Therefore, a 2 A, i.e., AS ✓ A.

Question: Is AS = A?

Proposition 2.20 Let (X,d) be a metric space, then AS = Ā.

Proof. Let a 2 A, then there exists an 2 B1/n(a)
T

A, which implies {an}! a, i.e., a 2

AS. ⌅

R If (X,T ) is metrizable, then AS = A. The same goes for first countable

topological spaces. However, AS is a proper subset of A in general:

Let A ✓ X be the set of continuous functions, where X = R
R denotes the set

of all real-valued functions on R, with the topology of pointwise convergence.

Then AS = B1, the set of all functions of first Baire-Category on R; and

[AS]S = B2, the set of all functions of second Baire-Category on R. Since

B1 6= B2, we have [AS]S = AS. Note that A = A. We conclude that AS cannot

equal to A, since the sequential closure operator cannot be idemotenet.

Definition 2.16 [Boundary] The boundary of AAA is defined as

∂AAA = A \ A�

⌅

Proposition 2.21 Let (X,T ) be a topological space with A, B ✓ X.

X \ A = X \ A�, (X \ B)� = X \ B ∂A = A
T
(X \ A)
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Proof.

X \ A� = X \

0

@ [

U is open, U✓A
U

1

A (2.2a)

=
\

U is open, U✓A
(X \ U) (2.2b)

=
\

V is closed, F◆X\A

F (2.2c)

= X \ A (2.2d)

Denoting X \ A by B, we obtain:

(X \ B)� = A� (2.3a)

= X \ (X \ A�) (2.3b)

= X \ X \ A (2.3c)

= X \ B (2.3d)

By definition of ∂A,

∂A = A \ A� (2.4a)

= A
\
(X \ A�) (2.4b)

= A
\
(X \ A) (2.4c)

⌅

2.6.2. Functions on Topological Space

Definition 2.17 [Continuous] Let f : (X,TX)! (Y,TY) be a map. Then the function f

is continuous, if

U 2 TY =) f�1(U) 2 TX

⌅
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⌅ Example 2.16 1. The identity map id : (X,T )! (X,T ) defined as x 7! x is con-

tinuous

2. The identity map id : (X,Tdiscrete)! (X,Tindiscrete) defined as x 7! x is continuous.

Since id�1(∆) = ∆ and id�1(X) = X

3. The identity map id : (X,Tindiscrete)! (X,Tdiscrete) defined as x 7! x is not contin-

uous.

⌅

Proposition 2.22 If f : X ! Y, and g : Y ! Z be continuous, then g � f is continuous

Proof. For given U 2 TZ, we imply

g�1(U) 2 TY =) f�1(g�1(U)) 2 TX,

i.e., (g � f )�1(U) 2 TX ⌅

Proposition 2.23 Suppose f : X ! Y is continuous between two topological spaces.

Then {xn}! X implies { f (xn)}! f (x).

Proof. Take open U 3 f (x), which implies f�1(U) 3 x. Since f�1(U) is open, we imply

there exists N such that

{xn | n � N} ✓ f�1(U),

i.e., { f (xn) | n � N} ✓ U ⌅

We use the notion of Homeomorphism to describe the equivalence between two

topological spaces.

Definition 2.18 [Homeomorphism] A homeomorphism between spaces topological

spaces (X,TX) and (Y,TY) is a bijection

f : (X,TX)! (Y,TY),

such that both f and f�1 are continuous. ⌅
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2.6.3. Subspace Topology

Definition 2.19 Let A ✓ X be a non-empty set. The subspace topology of A is defined

as:

1. TA := {U
T

A | U 2 TA}

2. The coarsest topology on A such that the inclusion map

i : (A,TA)! (X,TX), i(x) = x

is continuous.

(We say the topology T1 is coarser than T2, or T2 is finer than T1, if T1 ✓ T2

e.g., Tdiscrete is the finest topology, and Tindiscrete is coarsest topology.)

3. The (unique) topology such that for any (Y,TY),

f : (Y,TY)! (A,TA)

is continuous iff i � f : (Y,TY)! (X,TX) (where i is the inclusion map) is continuous.

⌅

Proposition 2.24 The definition (1) and (2) in (2.19) are equivalent.

Outline. The proof is by applying

i�1(S) = S
\

A, 8S

⌅

⌅ Example 2.17 Let all English and numerical letters be subset of R
2:

P,6

The homeomorphism can be constrcuted between these two English letters. ⌅
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Proposition 2.25 The definition (2) and (3) in (2.19) are equivalent.

Proof. Necessity.

• For 8U 2 TX, consider that

(i � f )�1(U) = f�1(i�1(U)) = f�1(U
\

A)

since U
T

A 2 TA and f is continuous, we imply (i � f )�1(U) 2 TY

• For 8U0 2 TA, we have U0 = U
T

A for some U 2 TX. Therefore,

f�1(U0) = f�1(U
\

A) = f�1(i�1(U)) = (i � f )�1(U) 2 TY.

The sufficiency is left as exercise. ⌅

Proposition 2.26 1. The definition (1) in (2.19) does define a topology of A

2. Closed sets of A under subspace topology are of the form V
T

A, where V is

closed in X

Proposition 2.27 Suppose (A,TA) ✓ (X,TX) is a subspace topology, and B ✓ A ✓ X.

Then

1. B̄A = B̄X T
A.

2. B�A ◆ B�X

Proof. By proposition (2.26), B̄X T
A is closed in A, and B̄X T

A � B, which implies

B̄A ✓ B̄X \
A

Note that B̄A � B is closed in A, which implies B̄A = V
T

A ✓ V, where V is closed

in X. Therefore,

B̄X ✓ V =) B̄X \
A ✓ V

\
A = B̄A

Therefore, B̄A = B̄X ✓ V

⌅
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Can we have B�X = B�A?

2.6.4. Basis (Base) of a topology

Roughly speaking, a basis of a topology is a family of “generators” of the topol-

ogy.

Definition 2.20 Let (X,T ) be a topological space. A family of subsets B in X is a basis

for T if

1. B ✓ T , i.e., everything in B is open

2. Every U 2 T can be written as union of elements in B.

⌅

⌅ Example 2.18 1. B = T is a basis.

2. For X = R
n,

B = {Br(xxx) | xxx 2 Q
n,r 2 Q

\
(0,•)}

Exercise: every (a,b) =
S

i2I(pi,qi) for pi,qi 2 Q.

Therefore, B is countable.

⌅

Proposition 2.28 If (X,T ) has a countable basis, e.g., R
n, then (X,T ) has a second-

countable space.
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