2.6. Wednesday for MAT4002

Reviewing.

1. Interior, Closure:

$$\overline{A} = \{x \mid \forall U \ni x \text{ open}, U \bigcap A \neq \emptyset\}$$

2. Accumulation points

2.6.1. Remark on Closure

Definition 2.14 [Sequential Closure] Let A_S be the set of limits of any convergent sequence in A, then A_S is called the **sequential closure** of A.

Definition 2.15 [Accumulation/Cluster Points] The set of accumulation (limit) points is defined as

$$A' = \{x \mid orall U
i x$$
 open , $(U \setminus \{x\}) \bigcap A
eq \emptyset\}$

 (\mathbf{R})

1. (a) There exists some point in A but not in A':

$$A = \{1, 2, 3, \dots, n, \dots\}$$

Then any point in *A* is not in A'

(b) There also exists some point in *A*' but not in *A*:

$$A = \left\{\frac{1}{n} \mid n \ge 1\right\}$$

Then the point 0 is in A' but not in A.

- 2. The closure $\overline{A} = A \bigcup A'$.
- 3. The size of the sequentical closure A_S is between A and \overline{A} , i.e., $A \subseteq A_S \subseteq \overline{A}$:

It's clear that $A \subseteq A_S$, since the sequence $\{a_n := a\}$ is convergent to a for $\forall a \in A$. For all $a \in A_S$, we have $\{a_n\} \rightarrow a$. Then for any open $U \ni a$, there exists N such that $\{a_N, a_{N+1}, \ldots\} \subseteq U \cap A \neq \emptyset$. Therefore, $a \in \overline{A}$, i.e., $A_S \subseteq \overline{A}$.

Question: Is $A_S = \overline{A}$?

Proposition 2.20 Let (X,d) be a metric space, then $A_S = \overline{A}$.

Proof. Let $a \in \overline{A}$, then there exists $a_n \in B_{1/n}(a) \cap A$, which implies $\{a_n\} \to a$, i.e., $a \in A_S$.

R If (X, \mathcal{T}) is metrizable, then $A_S = \overline{A}$. The same goes for first countable topological spaces. However, A_S is a proper subset of A in general:

Let $A \subseteq X$ be the set of continuous functions, where $X = \mathbb{R}^{\mathbb{R}}$ denotes the set of all real-valued functions on \mathbb{R} , with the topology of pointwise convergence.

Then $A_S = B_1$, the set of all functions of first Baire-Category on \mathbb{R} ; and $[A_S]_S = B_2$, the set of all functions of second Baire-Category on \mathbb{R} . Since $B_1 \neq B_2$, we have $[A_S]_S = A_S$. Note that $\overline{\overline{A}} = \overline{A}$. We conclude that A_S cannot equal to \overline{A} , since the sequential closure operator cannot be idemotenet.

Definition 2.16 [Boundary] The **boundary** of **A** is defined as

$$\partial \boldsymbol{A} = \overline{A} \setminus A^{\circ}$$

Proposition 2.21 Let (X, \mathcal{T}) be a topological space with $A, B \subseteq X$.

$$X \setminus A = X \setminus A^{\circ}, \quad (X \setminus B)^{\circ} = X \setminus \overline{B} \quad \partial A = \overline{A} \cap (X \setminus A)$$

Proof.

$$X \setminus A^{\circ} = X \setminus \left(\bigcup_{U \text{ is open, } U \subseteq A} U\right)$$
(2.2a)

$$= \bigcap_{\substack{U \text{ is open, } U \subseteq A}} (X \setminus U)$$
(2.2b)

$$= \bigcap_{V \text{ is closed, } F \supseteq X \setminus A} F$$
(2.2c)

$$=\overline{X\setminus A} \tag{2.2d}$$

Denoting $X \setminus A$ by *B*, we obtain:

$$(X \setminus B)^{\circ} = A^{\circ} \tag{2.3a}$$

$$= X \setminus (X \setminus A^{\circ}) \tag{2.3b}$$

$$= X \setminus X \setminus A \tag{2.3c}$$

$$= X \setminus \overline{B} \tag{2.3d}$$

By definition of ∂A ,

$$\partial A = \overline{A} \setminus A^{\circ} \tag{2.4a}$$

$$=\overline{A}\bigcap(X\setminus A^{\circ}) \tag{2.4b}$$

$$=\overline{A}\bigcap(\overline{X\setminus A})\tag{2.4c}$$

2.6.2. Functions on Topological Space

Definition 2.17 [Continuous] Let $f: (X, \mathcal{T}_X) \to (Y, \mathcal{T}_Y)$ be a map. Then the function f is continuous, if

$$U \in \mathcal{T}_Y \implies f^{-1}(U) \in \mathcal{T}_X$$

- **Example 2.16** 1. The identity map $id : (X, T) \to (X, T)$ defined as $x \mapsto x$ is continuous
 - 2. The identity map id : $(X, \mathcal{T}_{\text{discrete}}) \rightarrow (X, \mathcal{T}_{\text{indiscrete}})$ defined as $x \mapsto x$ is continuous. Since id⁻¹(\emptyset) = \emptyset and id⁻¹(X) = X
 - 3. The identity map id : $(X, \mathcal{T}_{indiscrete}) \rightarrow (X, \mathcal{T}_{discrete})$ defined as $x \mapsto x$ is not continuous.

Proposition 2.22 If $f : X \to Y$, and $g : Y \to Z$ be continuous, then $g \circ f$ is continuous

Proof. For given $U \in \mathcal{T}_Z$, we imply

$$g^{-1}(U) \in \mathcal{T}_Y \Longrightarrow f^{-1}(g^{-1}(U)) \in \mathcal{T}_X,$$

i.e., $(g \circ f)^{-1}(U) \in \mathcal{T}_X$

Proposition 2.23 Suppose $f : X \to Y$ is continuous between two topological spaces. Then $\{x_n\} \to X$ implies $\{f(x_n)\} \to f(x)$.

Proof. Take open $U \ni f(x)$, which implies $f^{-1}(U) \ni x$. Since $f^{-1}(U)$ is open, we imply there exists *N* such that

$$\{x_n \mid n \ge N\} \subseteq f^{-1}(U),$$

i.e., $\{f(x_n) \mid n \ge N\} \subseteq U$

We use the notion of Homeomorphism to describe the equivalence between two topological spaces.

Definition 2.18 [Homeomorphism] A homeomorphism between spaces topological spaces (X, \mathcal{T}_X) and (Y, \mathcal{T}_Y) is a bijection

$$f:(X,\mathcal{T}_X)\to(Y,\mathcal{T}_Y),$$

such that both f and f^{-1} are continuous.

Definition 2.19 Let $A \subseteq X$ be a non-empty set. The **subspace topology** of A is defined as:

- 1. $\mathcal{T}_A := \{ U \cap A \mid U \in \mathcal{T}_A \}$
- 2. The coarsest topology on A such that the inclusion map

$$i: (A, \mathcal{T}_A) \to (X, \mathcal{T}_X), \quad i(x) = x$$

is continuous.

(We say the topology \mathcal{T}_1 is coarser than \mathcal{T}_2 , or \mathcal{T}_2 is finer than \mathcal{T}_1 , if $\mathcal{T}_1 \subseteq \mathcal{T}_2$

e.g., $\mathcal{T}_{discrete}$ is the finest topology, and $\mathcal{T}_{indiscrete}$ is coarsest topology.)

3. The (unique) topology such that for any (Y, \mathcal{T}_Y) ,

$$f:(\Upsilon,\mathcal{T}_{\Upsilon})\to(A,\mathcal{T}_{A})$$

is continuous iff $i \circ f : (Y, \mathcal{T}_Y) \to (X, \mathcal{T}_X)$ (where *i* is the inclusion map) is continuous.

Proposition 2.24 The definition (1) and (2) in (2.19) are equivalent.

Outline. The proof is by applying

$$i^{-1}(S) = S \bigcap A, \quad \forall S$$

Example 2.17 Let all English and numerical letters be subset of \mathbb{R}^2 :

Ρ,6

The homeomorphism can be constrcuted between these two English letters.

Proposition 2.25 The definition (2) and (3) in (2.19) are equivalent.

Proof. Necessity.

• For $\forall U \in \mathcal{T}_X$, consider that

$$(i \circ f)^{-1}(U) = f^{-1}(i^{-1}(U)) = f^{-1}(U \bigcap A)$$

since $U \cap A \in \mathcal{T}_A$ and f is continuous, we imply $(i \circ f)^{-1}(U) \in \mathcal{T}_Y$

• For $\forall U' \in \mathcal{T}_A$, we have $U' = U \cap A$ for some $U \in \mathcal{T}_X$. Therefore,

$$f^{-1}(U') = f^{-1}(U \bigcap A) = f^{-1}(i^{-1}(U)) = (i \circ f)^{-1}(U) \in \mathcal{T}_{Y}.$$

The sufficiency is left as exercise.

Proposition 2.26 1. The definition (1) in (2.19) does define a topology of *A*

Closed sets of *A* under subspace topology are of the form *V*∩*A*, where *V* is closed in *X*

Proposition 2.27 Suppose $(A, \mathcal{T}_A) \subseteq (X, \mathcal{T}_X)$ is a subspace topology, and $B \subseteq A \subseteq X$. Then

- 1. $\bar{B}^A = \bar{B}^X \cap A$.
- 2. $B^{\circ A} \supseteq B^{\circ X}$

Proof. By proposition (2.26), $\bar{B}^X \cap A$ is closed in A, and $\bar{B}^X \cap A \supset B$, which implies

$$\bar{B}^A \subseteq \bar{B}^X \bigcap A$$

Note that $\overline{B}^A \supset B$ is closed in A, which implies $\overline{B}^A = V \cap A \subseteq V$, where V is closed in X. Therefore,

$$\bar{B}^X \subseteq V \implies \bar{B}^X \bigcap A \subseteq V \bigcap A = \bar{B}^A$$

Therefore, $\bar{B}^A = \bar{B}^X \subseteq V$

Can we have $B^{\circ X} = B^{\circ A}$?

2.6.4. Basis (Base) of a topology

Roughly speaking, a basis of a topology is a family of "generators" of the topology.

Definition 2.20 Let (X, \mathcal{T}) be a topological space. A family of subsets \mathcal{B} in X is a **basis** for \mathcal{T} if

- 1. $\mathcal{B} \subseteq \mathcal{T}$, i.e., everything in \mathcal{B} is open
- 2. Every $U \in \mathcal{T}$ can be written as union of elements in \mathcal{B} .

Example 2.18

B = T is a basis.

For X = ℝⁿ,
B = {B_r(**x**) | **x** ∈ Qⁿ, r ∈ Q∩(0,∞)}
Exercise: every (a,b) = U_{i∈I}(p_i,q_i) for p_i,q_i ∈ Q.

Therefore, \mathcal{B} is countable.

Proposition 2.28 If (X, \mathcal{T}) has a countable basis, e.g., \mathbb{R}^n , then (X, \mathcal{T}) has a second-countable space.