1.6. Wednesday for MAT4002

Reviewing.

- Metric Space (*X*, *d*)
- Open balls and open sets (note that the emoty set \emptyset is open)
- Define the collection of open sets in *X*, say T is the topology.

Exercise.

1. Show that the \mathcal{T}_2 under $(X = \mathbb{R}^2, d_2)$ and \mathcal{T}_∞ under $(X = \mathbb{R}^2, d_\infty)$ are the same.

Ideas. Follow the procedure below: An open ball in d_2 -metric is open in d_{∞} ; Any open set in d_2 -metric is open in d_{∞} ; Switch d_2 and d_{∞} .

2. Describe the topology $\mathcal{T}_{\text{discrete}}$ under the metric space $(X = \mathbb{R}^2, d_{\text{discrete}})$.

Outlines. Note that $\{x\} = B_{1/2}(x)$ is an open set.

For any subset $W \subseteq \mathbb{R}^2$, $W = \bigcup_{w \in W} \{w\}$ is open.

Therefore $\mathcal{T}_{\text{discrete}}$ is all subsets of \mathbb{R}^2 .

1.6.1. Forget about metric

Next, we will try to define closedness, compactness, etc., without using the tool of metric:

Definition 1.18 [closed] A subset $V \subseteq X$ is closed if $X \setminus V$ is open.

Example 1.19 Under the metric space (\mathbb{R}, d_1) ,

 $\mathbb{R} \setminus [b,a] = (a,\infty) \bigcup (-\infty,b)$ is open $\implies [b,a]$ is closed

Proposition 1.14 Let *X* be a metric space.

- 1. \emptyset , *X* is closed in *X*
- 2. If F_{α} is closed in *X*, so is $\bigcap_{\alpha \in A} F_{\alpha}$.
- 3. If F_1, \ldots, F_k is closed, so is $\bigcup_{i=1}^k F_i$.
- *Proof.* 1. Note that *X* is open in *X*, which implies $\emptyset = X \setminus X$ is closed in *X*; Similarly, \emptyset is open in *X*, which implies $X = X \setminus \emptyset$ is closed in *X*;
 - 2. The set F_{α} is closed implies there exists open $U_{\alpha} \subseteq X$ such that $F_{\alpha} = X \setminus U_{\alpha}$. By De Morgan's Law,

$$\bigcap_{\alpha\in A}F_{\alpha}=\bigcap_{\alpha\in A}(X\setminus U_{\alpha})=X\setminus (\bigcup_{\alpha\in A}U_{\alpha}).$$

By part (a) in proposition (1.6), the set $\bigcup_{\alpha \in A} U_{\alpha}$ is openm which implies $\bigcap_{\alpha \in A} F_{\alpha}$ is closed.

3. The result follows from part (b) in proposition (1.6) by taking complements.

We illustrate examples where open set is used to define convergence and continuity.

1. Convergence of sequences:

Definition 1.19 [Convergence] Let (X,d) be a metric space, then $\{x_n\} \to x$ means $\forall \epsilon > 0, \exists N$ such that $d(x_n, x) < \epsilon, \forall n \ge N$.

We will study the convergence by using open sets instead of metric.

Proposition 1.15 Let *X* be a metric space, then $\{x_n\} \to x$ if and only if for \forall open set $U \ni x$, there exists *N* such that $x_n \in U$ for $\forall n \ge N$.

Proof. Necessity: Since $U \ni x$ is open, there exists $\varepsilon > 0$ such that $B_{\varepsilon}(x) \subseteq U$. Since $\{x_n\} \to x$, there exists N such that $d(x_n, x) < \varepsilon$, i.e., $x_n \in B_{\varepsilon}(x) \subseteq U$ for $\forall n \ge N$. *Sufficiency*: Let $\varepsilon > 0$ be given. Take the open set $U = B_{\varepsilon}(x) \ni x$, then there exists *N* such that $x_n \in U = B_{\varepsilon}(x)$ for $\forall n \ge N$, i.e., $d(x_n, x) < \varepsilon$, $\forall n \ge N$.

2. Continuity:

Definition 1.20 [Continuity] Let (X,d) and (Y,ρ) be given metric spaces. Then $f: X \to Y$ is continuous at $x_0 \in X$ if $\forall \varepsilon > 0, \exists \delta > 0$ such that $d(x, x_0) < \delta \implies \rho(f(x), f(x_0)) < \varepsilon$.

The function f is continuous on X if f is continuous for all $x_0 \in X$.

We can get rid of metrics to study continuity:

- (a) The function f is continuous at x if and only if for all **Proposition 1.16** open $U \ni f(x)$, there exists $\delta > 0$ such that the set $B(x, \delta) \subseteq f^{-1}(U)$.
- (b) The function *f* is continuous on *X* if and only if $f^{-1}(U)$ is open in *X* for each open set $U \subseteq Y$.

During the proof we will apply a small lemma:

Proposition 1.17 *f* is continuous at *x* if and only if for all $\{x_n\} \rightarrow x$, we have $\{f(x_n)\} \to f(x).$

Proof. (a) *Necessity*:

Due to the openness of $U \ni f(x)$, there exists a ball $B(f(x), \varepsilon) \subseteq U$.

Due to the continuity of *f* at *x*, there exists $\delta > 0$ such that $d(x, x') < \delta$ implies $d(f(x), f(x')) < \varepsilon$, which implies

$$f(B(x,\delta))\subseteq B(f(x),\varepsilon)\subseteq U,$$

which implies $B(x, \delta) \subseteq f^{-1}(U)$.

Sufficiency:

Let $\{x_n\} \to x$. It suffices to show $\{f(x_n)\} \to f(x)$. For each open $U \ni f(x)$,

by hypothesis, there exists $\delta > 0$ such that $B_{\delta}(x) \subseteq f^{-1}(U)$. Since $\{x_n\} \to x$, there exists *N* such that

$$x_n \in B_{\delta}(x) \subseteq f^{-1}(U), \forall n \ge N \implies f(x_n) \in U, \forall n \ge N$$

Let $\varepsilon > 0$ be given, and then construct the $U = B_{\varepsilon}(f(x))$. The argument above shows that $f(x_n) \in B_{\varepsilon}(f(x))$ for $\forall n \ge N$, which implies $\rho(f(x_n), f(x)) < \varepsilon$, i.e., $\{f(x_n)\} \rightarrow f(x)$.

(b) For the forward direction, it suffices to show that each point x of $f^{-1}(U)$ is an interior point of $f^{-1}(U)$, which is shown by part (*a*); the converse follows trivially by applying (*a*).

As illustracted above, convergence, continuity, (and compactness) can be (\mathbf{R}) defined by using open sets \mathcal{T} only.

1.6.2. Topological Spaces

Definition 1.21 A topological space (X, \mathcal{T}) consists of a (non-empty) set X, and a family of subsets of X ("open sets" \mathcal{T}) such that

1. $\emptyset, X \in \mathcal{T}$ 2. $U, V \in \mathcal{T}$ implies $U \cap V \in \mathcal{T}$ 3. If $U_{\alpha} \in \mathcal{T}$ for all $\alpha \in \mathcal{A}$, then $\bigcup_{\alpha \in \mathcal{A}} U_{\alpha} \in \mathcal{T}$. The elements in \mathcal{T} are called **open subsets** of X. The \mathcal{T} is called a **topology** on X.

Example 1.20 1. Let (X,d) be any metric space, and

 $\mathcal{T} = \{ all open subsets of X \}$

It's clear that \mathcal{T} is a topology on X.

2. Define the discrete topology

$$\mathcal{T}_{\mathsf{dis}} = \{ \mathsf{all subsets of } X \}$$

It's clear that \mathcal{T}_{dis} is a topology on X, (which also comes from the discrete metric $(X, d_{discrete})$).

- **R** We say (X, \mathcal{T}) is induced from a metric (X, d) (or it is **metrizable**) if \mathcal{T} is the faimly of open subsets in (X, d).
- 3. Consider the indiscrete topology (X, \mathcal{T}_{indis}) , where X contains more than one element:

$$\mathcal{T}_{\mathsf{indis}} = \{ \emptyset, X \}.$$

Question: is (X, \mathcal{T}_{indis}) metrizable? No. For any metric d defined on X, let x, y be distinct points in X, and then $\varepsilon := d(x, y) > 0$, hence $B_{\frac{1}{2}\varepsilon}(x)$ is a open set belonging to the corresponding induced topology. Since $x \in B_{\frac{1}{2}\varepsilon}(x)$ and $y \notin B_{\frac{1}{2}\varepsilon}(y)$, we conclude that $B_{\frac{1}{2}\varepsilon}(x)$ is neither \emptyset nor X, i.e., the topology induced by any metric d is not the indiscrete topology.

4. Consider the cofinite topology (X, \mathcal{T}_{cofin}) :

$$\mathcal{T}_{\mathsf{cofin}} = \{ U \mid X \setminus U \text{ is a finite set} \} \bigcup \{ \emptyset \}$$

Question: is (X, \mathcal{T}_{cofin}) metrizable?

Definition 1.22 [Equivalence] Two metric spaces are **topologically equivalent** if they give rise to the same topology.

Example 1.21 Metrics d_1, d_2, d_∞ in \mathbb{R}^n are topologically equivalent.

1.6.3. Closed Subsets

Definition 1.23 [Closed] Let (X, \mathcal{T}) be a topology space. Then $V \subseteq X$ is closed if $X \setminus V \in J$

Example 1.22 Under the topology space $(\mathbb{R}, \mathcal{T}_{usual})$, $(b, \infty) \cup (-\infty, a) \in \mathcal{T}$. Therefore,

$$[a,b] = \mathbb{R} \setminus \left((b,\infty) \bigcup (-\infty,a) \right)$$

is closed in ${\ensuremath{\mathbb R}}$ under usual topology.

R It is important to say that *V* is **closed in** *X*. You need to specify the underlying the space *X*.