
1.6. Wednesday for MAT4002
Reviewing.

• Metric Space (X,d)

• Open balls and open sets (note that the emoty set ∆ is open)

• Define the collection of open sets in X, say T is the topology.

Exercise.

1. Show that the T2 under (X = R
2,d2) and T• under (X = R

2,d•) are the same.

Ideas. Follow the procedure below:

An open ball in d2-metric is open in d•;

Any open set in d2-metric is open in d•;

Switch d2 and d•. ⌅

2. Describe the topology Tdiscrete under the metric space (X = R
2,ddiscrete).

Outlines. Note that {x} = B1/2(x) is an open set.

For any subset W ✓ R
2, W =

S
w2W{w} is open.

Therefore Tdiscrete is all subsets of R
2. ⌅

1.6.1. Forget about metric

Next, we will try to define closedness, compactness, etc., without using the tool of

metric:

Definition 1.18 [closed] A subset V ✓ X is closed if X \ V is open. ⌅

⌅ Example 1.19 Under the metric space (R,d1),

R \ [b, a] = (a,•)
[
(�•,b) is open =) [b, a] is closed

⌅
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Proposition 1.14 Let X be a metric space.

1. ∆, X is closed in X

2. If Fa is closed in X, so is
T

a2A Fa.

3. If F1, . . . , Fk is closed, so is
Sk

i=1 Fi.

Proof. 1. Note that X is open in X, which implies ∆ = X \ X is closed in X;

Similarly, ∆ is open in X, which implies X = X \ ∆ is closed in X;

2. The set Fa is closed implies there exists open Ua ✓ X such that Fa = X \ Ua. By

De Morgan’s Law,

\

a2A
Fa =

\

a2A
(X \ Ua) = X \ (

[

a2A
Ua).

By part (a) in proposition (1.6), the set
S

a2A Ua is openm which implies
T

a2A Fa

is closed.

3. The result follows from part (b) in proposition (1.6) by taking complements.

⌅

We illustrate examples where open set is used to define convergence and continuity.

1. Convergence of sequences:

Definition 1.19 [Convergence] Let (X,d) be a metric space, then {xn}! x means

8# > 0,9N such that d(xn, x) < #,8n � N.

⌅

We will study the convergence by using open sets instead of metric.

Proposition 1.15 Let X be a metric space, then {xn} ! x if and only if for 8

open set U 3 x, there exists N such that xn 2 U for 8n � N.

Proof. Necessity: Since U 3 x is open, there exists # > 0 such that B#(x) ✓ U.

Since {xn} ! x, there exists N such that d(xn, x) < #, i.e., xn 2 B#(x) ✓ U for

8n � N.
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Sufficiency: Let # > 0 be given. Take the open set U = B#(x) 3 x, then there exists

N such that xn 2 U = B#(x) for 8n � N, i.e., d(xn, x) < #, 8n � N.

⌅

2. Continuity:

Definition 1.20 [Continuity] Let (X,d) and (Y,r) be given metric spaces. Then

f : X ! Y is continuous at x0 2 X if

8# > 0,9d > 0 such that d(x, x0) < d =) r( f (x), f (x0)) < #.

The function f is continuous on X if f is continous for all x0 2 X. ⌅

We can get rid of metrics to study continuity:

Proposition 1.16 (a) The function f is continuous at x if and only if for all

open U 3 f (x), there exists d > 0 such that the set B(x,d) ✓ f�1(U).

(b) The function f is continuous on X if and only if f�1(U) is open in X for

each open set U ✓ Y.

During the proof we will apply a small lemma:

Proposition 1.17 f is continuous at x if and only if for all {xn} ! x, we have

{ f (xn)}! f (x).

Proof. (a) Necessity:

Due to the openness of U 3 f (x), there exists a ball B( f (x), #) ✓ U.

Due to the continuity of f at x, there exists d > 0 such that d(x, x0) < d

implies d( f (x), f (x0)) < #, which implies

f (B(x,d)) ✓ B( f (x), #) ✓ U,

which implies B(x,d) ✓ f�1(U).

Sufficiency:

Let {xn}! x. It suffices to show { f (xn)}! f (x). For each open U 3 f (x),
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by hypothesis, there exists d > 0 such that Bd(x) ✓ f�1(U).

Since {xn}! x, there exists N such that

xn 2 Bd(x) ✓ f�1(U),8n � N =) f (xn) 2 U,8n � N

Let # > 0 be given, and then construct the U = B#( f (x)). The argument above

shows that f (xn) 2 B#( f (x)) for 8n � N, which implies r( f (xn), f (x)) < #,

i.e., { f (xn)}! f (x).

(b) For the forward direction, it suffices to show that each point x of f�1(U)

is an interior point of f�1(U), which is shown by part (a); the converse

follows trivially by applying (a).

⌅

R As illustracted above, convergence, continuity, (and compactness) can be

defined by using open sets T only.

1.6.2. Topological Spaces

Definition 1.21 A topological space (X,T ) consists of a (non-empty) set X, and a

family of subsets of X (“open sets” T ) such that

1. ∆, X 2 T

2. U,V 2 T implies U
T

V 2 T

3. If Ua 2 T for all a 2A, then
S

a2A Ua 2 T .

The elements in T are called open subsets of X. The T is called a topology on X. ⌅

⌅ Example 1.20 1. Let (X,d) be any metric space, and

T = {all open subsets of X}

It’s clear that T is a topology on X.
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2. Define the discrete topology

Tdis = {all subsets of X}

It’s clear that Tdis is a topology on X, (which also comes from the discrete metric

(X,ddiscrete)).

R We say (X,T ) is induced from a metric (X,d) (or it is metrizable) if

T is the faimly of open subsets in (X,d).

3. Consider the indiscrete topology (X,Tindis), where X contains more than one element:

Tindis = {∆, X}.

Question: is (X,Tindis) metrizable? No. For any metric d defined on X, let x,y

be distinct points in X, and then # := d(x,y) > 0, hence B 1
2 #(x) is a open set

belonging to the corresponding induced topology. Since x 2 B 1
2 #(x) and y /2 B 1

2 #(y),

we conclude that B 1
2 #(x) is neither ∆ nor X, i.e., the topology induced by any metric

d is not the indiscrete topology.

4. Consider the cofinite topology (X,Tcofin):

Tcofin = {U | X \ U is a finite set}
[
{∆}

Question: is (X,Tcofin) metrizable?

⌅

Definition 1.22 [Equivalence] Two metric spaces are topologically equivalent if they

give rise to the same topology. ⌅

⌅ Example 1.21 Metrics d1,d2,d• in R
n are topologically equivalent. ⌅

1.6.3. Closed Subsets
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Definition 1.23 [Closed] Let (X,T ) be a topology space. Then V ✓ X is closed if

X \ V 2 J ⌅

⌅ Example 1.22 Under the topology space (R,Tusual), (b,•)
S
(�•, a) 2 T . Therefore,

[a,b] = R \
⇣
(b,•)

[
(�•, a)

⌘

is closed in R under usual topology. ⌅

R It is important to say that V is closed in X. You need to specify the underlying

the space X.

32


	Acknowledgments
	Notations
	Week1
	Monday for MAT3040
	Introduction to Advanced Linear Algebra
	Vector Spaces

	Monday for MAT3006
	Overview on uniform convergence
	Introduction to MAT3006
	Metric Spaces

	Monday for MAT4002
	Introduction to Topology
	Metric Spaces

	Wednesday for MAT3040
	Review
	Spanning Set
	Linear Independence and Basis

	Wednesday for MAT3006
	Convergence of Sequences
	Continuity
	Open and Closed Sets

	Wednesday for MAT4002
	Forget about metric
	Topological Spaces
	Closed Subsets


	Week2
	Monday for MAT3040
	Basis and Dimension
	Operations on a vector space

	Monday for MAT3006
	Remark on Open and Closed Set
	Boundary, Closure, and Interior

	Monday for MAT4002
	Convergence in topological space
	Interior, Closure, Boundary

	Wednesday for MAT3040
	Remark on Direct Sum
	Linear Transformation

	Wednesday for MAT3006
	Compactness
	Completeness

	Wednesday for MAT4002
	Remark on Closure
	Functions on Topological Space
	Subspace Topology
	Basis (Base) of a topology



