
1.3. Monday for MAT4002

1.3.1. Introduction to Topology

We will study global properties of a geometric object, i.e., the distrance between 2 points

in an object is totally ignored. For example, the objects shown below are essentially

invariant under a certain kind of transformation:

Another example is that the coffee cup and the donut have the same topology:

However, the two objects below have the intrinsically different topologies:

In this course, we will study the phenomenon described above mathematically.
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1.3.2. Metric Spaces

In order to ingnore about the distances, we need to learn about distances first.

Definition 1.7 [Metric Space] Metric space is a set X where one can measure distance

between any two objects in X.

Specifically speaking, a metric space X is a non-empty set endowed with a function

(distance function) d : X ⇥ X ! R such that

1. d(xxx,yyy) � 0 for 8xxx,yyy 2 X with equality iff xxx = yyy

2. d(xxx,yyy) = d(yyy, xxx)

3. d(xxx,zzz)  d(xxx,yyy) + d(yyy,zzz) (triangular inequality)

⌅

⌅ Example 1.10 1. Let X = R
n, with

d2(xxx,yyy) =

s
n

Â
i=1

(xi � yi)2

d•(xxx,yyy) = max
i=1,...,n

|xi � yi|

2. Let X be any set, and define the discrete metric

d(xxx,yyy) =

8
><

>:

0, if x = y

1, if x 6= y

Homework: Show that (1) and (2) defines a metric. ⌅

Definition 1.8 [Open Ball] An open ball of radius r centered at xxx 2 X is the set

Br(xxx) = {yyy 2 X | d(xxx,yyy) < r}

⌅
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⌅ Example 1.11 1. The set B1(0,0) defines an open ball under the metric (X =

R
2,d2), or the metric (X = R

2,d•). The corresponding diagram is shown below:

Figure 1.3: Left: under the metric (X = R
2,d2); Right: under the metric (X = R

2,d•)

2. Under the metric (X = R
2,discrete metric), the set B1(0,0) is one single point, also

defines an open ball.

⌅

Definition 1.9 [Open Set] Let X be a metric space, U ✓ X is an open set in X if 8u 2 U,

there exists eu > 0 such that Beu(u) ✓ U. ⌅

Definition 1.10 The topology induced from (X,d) is the collection of all open sets in

(X,d), denoted as the symbol T . ⌅

Proposition 1.5 All open balls Br(xxx) are open in (X,d).

Proof. Consider the example X = R with metric d2. Therefore Br(x) = (x � r, x + r).

Take yyy 2 Br(xxx) such that d(xxx,yyy) = q < r and consider B(r�q)/2(yyy): for all z 2 B(r�q)/2(yyy),

we have

d(xxx,zzz)  d(xxx,yyy) + d(yyy,zzz) < q +
r � q

2
< r,

which implies zzz 2 Br(x). ⌅

Proposition 1.6 Let (X,ddd) be a metric space, and T is the topology induced from

(X,d), then

1. let the set {Ga | a 2 A} be a collection of (uncountable) open sets, i.e., Ga 2 T ,
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then
S

a2A Ga 2 T .

2. let G1, . . . , Gn 2 T , then
Tn

i=1 Gi 2 T . The finite intersection of open sets is open.

Proof. 1. Take x 2 S
a2A Ga, then x 2 Gb for some b 2 A. Since Gb is open, there

exists ex > 0 s.t.

Bex(x) ✓ Gb ✓
[

a2A
Ga

2. Take x 2 Tn
i=1 Gi, i.e., x 2 Gi for i = 1, . . . ,n, i.e., there exists ei > 0 such that

Bei(x) ✓ Gi for i = 1, . . . ,n. Take e = min{e1, . . . ,en}, which implies

Be(x) ✓ Bei(x) ✓ Gi,8i

which implies Be(x) ✓ Tn
i=1 Gi

⌅

Exercise.

1. let T2,T• be topologies induced from the metrices d2,d• in R
2. Show that J2 = J•,

i.e., every open set in (R2,d2) is open in (R2,d•), and every open set in (R2,d•)

is open in (R2,d2).

2. Let T be the topology induced from the discrete metric (X,ddiscrete). What is T ?
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