15.3. Monday for MAT4002

Theorem 15.4 Let Γ be a connected graph. Then $\pi(\Gamma)$ is isomorphic to the free group generated by $\#{E(\Gamma) \setminus E(T)}$ elements, for any maximal tree of Γ.

Now we give a proof for this theorem on one special case of Γ :

Proof. • Fiz

• Fix an orientation for each $e \in E(\Gamma) \setminus E(T)$:

• Now let *K* be a simplicial complex with $|K| \cong \Gamma$:

As a result, $E(K, b) \cong \pi_1(\Gamma)$

• Now we construct the group homomorphism

$$\phi: \quad \langle \alpha, \beta, \gamma, \delta \rangle \to E(K, b)$$
with
$$\phi(\alpha) = [ba'a''b]$$

$$\phi(\beta) = [bee'f''b'b''b]$$

$$\phi(\gamma) = [bee'f''f'fdc'c''f''e'eb]$$

$$\phi(\delta) = [bee'f''f'fdd''d'dff'f''e'eb]$$

We can show the group homomorphism *φ* is bijective. In particular, the inverse of *φ* is given by:

$$\Psi: \quad E(K,b) \to \langle \alpha, \beta, \gamma, \delta \rangle$$

where for any $[\ell] := [bv_1 \cdots v_n] \in E(K, b)$, the mapping $\Psi[\ell]$ is constructed by

(a) Remove all other letters appearing in ℓ except b, a', a'', b', b'', c', c'', d', d''

(b) Assign

$$\alpha$$
, α^{-1} , β , β^{-1} , γ , γ^{-1} , δ , δ^{-1}

for each appearance of

respectively.

15.4. The Selfert-Van Kampen Theorem

Theorem 15.5 Let $K = K_1 \cup K_2$ be the union of two **path-connected open** sets, where $K_1 \cap K_2$ is also path-connected. Take $b \in K_1 \cap K_2$, and suppose the group presentations for $\pi_1(K_1, b), \pi_1(K_2, b)$ are

$$\pi_1(K_1,b) \cong \langle X_1 \mid R_1 \rangle, \quad \pi_1(K_2,b) \cong \langle X_2 \mid R_2 \rangle.$$

Let the inclusions be

$$i_1: K_1 \cap K_2 \hookrightarrow K_1, \quad i_2: K_1 \cap K_2 \hookrightarrow K_2,$$

then a presentation of $\pi_1(K, b)$ is given by:

 $\pi_1(K,b) \cong \langle X_1 \cup X_2 \mid R_1 \cup R_2 \cup \{(i_1)_*(g) = (i_2)_*(g) : \forall g \in \pi_1(K_1 \cap K_2, b)\} \rangle.$

(Here $(i_1)_* : \pi_1(K_1 \cap K_2, b) \hookrightarrow \pi_1(K_1, b)$ and $(i_2)_* : \pi_1(K_1 \cap K_2, b) \hookrightarrow \pi_1(K_2, b)$.)

(d) Therefore, by Seifert-Van Kampen Theorem,

$$\pi_1(K,b) \cong \langle \alpha,\beta \mid e = e \rangle \cong \langle \alpha,\beta \rangle$$

2. By induction,

$$\pi_1(\wedge^n S^1, b) \cong \langle a_1, \dots, a_n \rangle$$

For instance, the figure illustration for $\wedge^4 S^1$ and the basepoint b is given below:

3. (a) Construct $S^2 = K_1 \cup K_2$, which is shown below:

Therefore, we see that $K_1 \cap K_2 \simeq S^1$:

(b) It's clear that K_1 and K_2 are contractible, and therefore

$$\pi_1(K_1) \cong \langle \beta \mid \beta \rangle, \quad \pi_1(K_2) \cong \langle \gamma \mid \gamma \rangle$$

and $\pi_1(K_1 \cap K_2) \cong \pi_1(S^1) \cong \langle \alpha \rangle$.

(c) Then we compute $(i_1)_*$ and $(i_2)_*$. In particular, the mapping $(i_1)_*$ is defined as

 $(i_1)_*: \quad \pi_1(K_1 \cap K_2) \to \pi_1(K_1)$ with $[\alpha] \mapsto [i_1(\alpha)]$

where α is any loop based at b. Since K_1 is contractible, we imply α in K_1 is homotopic to c_b , i.e.,

$$(i_1)_*([\alpha]) = [i_1(\alpha)] = e, \forall \alpha \in \pi_1(K_1 \cap K_2).$$

Similarly, $(i_2)_*([\alpha]) = e$.

(d) By Seifert-Van Kampen Theorem, we conclude that

$$\pi_1(S^2) \cong \langle \beta, \gamma \mid \beta, \gamma, e = e \rangle \cong \{e\}$$

4. Homework: Use the same trick to check that $\pi_1(S^n) = \{e\}$ for all $n \ge 2$. Hint: for S^3 , construct

$$K_1 = \{(x_1, \dots, x_4) \in S^3 \mid x_4 > -1/2\}$$

and

$$K_1 = \{(x_1, \dots, x_4) \in S^3 \mid x_4 < 1/2\}$$

5. (a) Consider the quotient space $K \cong \mathbb{T}^2$, and we construct $K = K_1 \cup K_2$ as follows:

Therefore, we can see that K_1 is contractible, and K_2 is homotopy equivalent to $S^1 \wedge S^1$:

Figure 15.2: Illustration for $K_2 \simeq S^1 \wedge S^1$

K₂

(b) It follows that

$$\pi_1(K_1) \cong \{e\}, \quad \pi_1(K_2) \cong \langle \alpha, \beta \rangle,$$

and $\pi_1(K_1 \cap K_2) \cong \langle \gamma \rangle$.

(c) Then we compute $(i_1)_*$ and $(i_2)_*$. In particular, $(i_1)_*$ is trivial:

$$(i_1)_*: \quad \pi_1(K_1 \cap K_2) \to \pi_1(K_1)$$

with $[\alpha] \mapsto e$

Then compute $(i_2)_*$. In particular, for any loop γ , we draw the graph for $i_2(\gamma)$:

Therefore,

$$(i_2)_*[\gamma] = [i_2(\gamma)] = [\alpha\beta\alpha^{-1}\beta^{-1}]$$

(d) By Seifert-Van Kampen Theorem, we conclude that

$$\pi_1(K) \cong \langle \alpha, \beta \mid \beta, \alpha \beta \alpha^{-1} \beta^{-1} = e \rangle \cong \langle \alpha, \beta \mid, \alpha \beta = \beta \alpha \rangle \cong \mathbb{Z} \times \mathbb{Z}$$

6. Exerise: The Klein bottle K shown in graph below satisfies $\pi_1(K) = \langle a, b \mid aba^{-1}b \rangle$.

7. Consider the quotient space $K = \mathbb{R}P^2$. We construct $K = K_2 \cup K_2$, which is shown below:

(a) It's clear that K_1 is contractible. In hw3, question 1, we can see that $K_2 \simeq S^1$. Moreover, similar as in (5), $K_1 \cap K_2 \simeq S^1$.

- (b) Therefore, $\pi_1(K_1) = \{e\}$ and $\pi_1(K_2) = \langle \alpha \rangle$, $\pi_1(K_1 \cap K_2) = \langle \gamma \rangle$.
- (c) It's easy to see that $(i_1)_*([\gamma]) = e$ for any loop γ . For any loop γ , we draw the graph for $i_2(\gamma)$:

Therefore, $(i_2)_*([\gamma]) = [i_2(\gamma)] = [\alpha^2].$

(d) By Seifert-Van Kampen Theorem, we conclude that

$$\pi_1(K) \cong \langle \alpha \mid \alpha^2 = e \rangle \cong \mathbb{Z}/2\mathbb{Z} \cong \{0,1\}_{\text{mod }(2)}$$

8. Let $K = \mathbb{R}^2 \setminus \{2 \text{ points } \alpha, \beta\}$. As have shown in hw3, $K \simeq S^1 \wedge S^1$, which implies

$$\pi_1(K) \cong \pi_1(S^1 \wedge S^1) \cong \langle \alpha, \beta \rangle.$$

We can compute the fundamental group for K directly. Construct $K = K_1 \cup K_2$ as follows:

- (a) It's clear that $K_1 \cong \mathbb{R}^2 \setminus \{\text{one point}\} \simeq S^1$ and similarly $K_2 \simeq S^1$. Moreover, $K_1 \cap K_2$ is contractible
- (b) Therefore,

 $\pi_1(K_1) \cong \langle \alpha \rangle, \quad \pi_1(K_2) \cong \langle \beta \rangle, \quad \pi_1(K_1 \cap K_2) \cong \{e\}$

- (c) Therefore, $(i_1)_*$ and $(i_2)_*$ is trivial since $\pi_1(K_1 \cap K_2) \cong \{e\}$.
- (d) By Seifert-Van Kampen Theorem, we conclude that

$$\pi_1(K) \cong \langle \alpha, \beta \mid e = e \rangle \cong \langle \alpha, \beta \rangle$$