14.3. Monday for MAT4002

14.3.1. Fundamental group of a Graph

Definition 14.3 [Graph] A graph T = (V, E) is defined by the following components:

- V is a finite or countable set, called vertex set;
- E is a finite or countable set, called edge set;
- A function δ : E → V × V with δ(e) = (ℓ(e), τ(e)), where ℓ(e), τ(e) is known as the endpoints of e.

• Example 14.2 1. Let $V = \{1\}, E = \{e_1, e_2, e_3\}$, and define $\delta(e_i) = (1, 1), i = 1, 2, 3$. The graph (V, E) is represented below:

2. Let $V = \{e_1, e_2, e_3\}$ and $E = \{e_1, \dots, e_6\}$, and define

$$\delta(e_1) = (1,1), \quad \delta(e_2) = (1,2), \quad \delta(e_3) = (1,2),$$

$$\delta(e_4) = (2,3), \quad \delta(e_5) = (2,3), \quad \delta(e_6) = (3,3).$$

The graph (V, E) is represented below (We do not care the direction of edges for this graph):

Definition 14.4 [Realizatin of a Graph] For a given graph $\Gamma = (V, E)$, construct a realization by

$$\{|V| \times \{\text{zero simplies}\} \mid |E| \times \{1\text{-simplies}\}\}/\sim$$

where the equivalence class is induced from the function δ . We still call this realization of the graph as Γ .

In general, graphs are not simplicial complexes. But we can "sub-divide" each edge of Γ into three parts such that there exists simplicial complex *K* with $|K| \cong \Gamma$. For instance,

where |K| is a simplicial complex.

Definition 14.5 • Subgraph $\Gamma' \subseteq \Gamma$: $\Gamma' = (V', E')$ with $V' \subseteq V$ and $E' \subseteq E$, and $\delta \mid_{V'}: E' \to V' \times V'$

• Edge path: A continous function $p:[0,1] \rightarrow \Gamma$ such that there exists $n \in \mathbb{N}$ satisfying

$$p\mid_{[i/n,i+1/n]}:\left[\frac{i}{n},\frac{i+1}{n}\right]\to T$$

is a path along an edge of Γ , or a constant function on a vertex of Γ , for $0 \le i \le n-1$.

R Under the homeomorphism $\Gamma \cong |K|$, each edge path is homotopic to $|g_{\alpha}|$ for some edge path α in the simplicial complex *K*. For instance,

- An Edge loop is an edge path p such that $p(0) = p(1) = b \in V$.
- Embedded Edge Loop: An injective edge loop, i.e., $p:[0,1] \rightarrow \Gamma$ such that

for
$$x \notin V$$
, $p^{-1}(x) = \emptyset$ or a single point.

- Tree: a connected graph T that contains no embedded edge loop p: [0,1] → T.
 For instance, as shown in the figure, T₁ contains no edge loop, in particular, the edge loop (a,b,a) is not embedded; T₂ contains embedded edge loop (a,b,c,d,a).
- Maximal Tree of a connected graph Γ:
 - A subgraph T of Γ such that T is a tree.
 - By adding an edge $e \in E(\Gamma) \setminus E(T)$ into T, the new graph is no longer a tree.

For instance, $T \subseteq \Gamma$ shown in the figure below is a maximal tree.

Theorem 14.5 Let Γ be a connected graph, and T is a subgraph of Γ such that T is a tree. Then T is a maximal tree if and only if $V(T) = V(\Gamma)$.

Moreover, there always exists a maximal tree for all Γ .

Proof Outline for second part. Construct an ordering of $\{v_1, ..., v_i\} \subseteq V(\Gamma)$, such that for each integer $i \ge 2$, there is an edge connecting v_{i+1} with some vertex in $\{v_1, ..., v_i\}$.

Then construct $T_1 \subseteq T_2 \subseteq \cdots$, where T_i is a tree containing vertices $\{v_1, \ldots, v_i\}$. As a result, $T = \bigcup_{i \in \mathbb{N}} T_i$ is a maximal tree.

Theorem 14.6 Let Γ be a connected graph. Then $\pi(\Gamma)$ is isomorphic to the free group generated by $\#{E(\Gamma) \setminus E(T)}$ elements, for any maximal tree of Γ.

Therefore, $\pi_1(\Gamma_1) \cong \langle a, b, c, d \rangle$ since $\# \{ E(\Gamma_1) \setminus E(T) \} = 4$.

2. The graph $T \subseteq \Gamma_2$ shown in the figure below is a maximal tree.

Therefore, $\pi_1(\Gamma_2) \cong \langle a, b, c, d \rangle$ since $\# \{ E(\Gamma_2) \setminus E(T) \} = 4$.

3. Note that $\Gamma_1 \simeq \Gamma_2$.