13.6. Wednesday for MAT4002

13.6.1. Applications on the isomorphism of funda-

mental group

Theorem 13.6

 $\pi_1(S^1) \cong (\mathbb{Z}, +)$

Proof. Define the orientation of |K| as shown in Fig. (13.3).

Figure 13.3: Orientation of |K|

Following the proof during last lecture, we construct

 $\phi: \quad E(K,1) \to (\mathbb{Z},+)$
with $[\alpha] \mapsto$ winding number of α

where the winding number of α is the

number of 23 appearing in α – number of 32 appearing in α .

Note that

1. The winding number is invariant under elementary contraction and elementary expansion.

2. In particular,

winding number for
$$(1 \underbrace{23 \cdots 123}_{23 \text{ shows for } m \text{ times}} 1) = m$$

winding number for $(1 \underbrace{32 \cdots 132}_{32 \text{ shows for } n \text{ times}} 1) = -n$

3. For any given α , it is equivalent to a unique (123123…1231) or (132…1321), since otherwise α will have different winding numbers.

Therefore, (1) and (3) shows the well-definedness of ϕ . In particular, (1) shows that as $\alpha \sim \alpha'$, we have $\phi([\alpha]) = \phi([\alpha'])$; (2) shows that the winding number of α is an unique integer.

• Homomorphism: For given any two edge loops α, β based at 1, suppose that $[\alpha] = [(1bc1bc\cdots 1bc1)]$ and $[\beta] = [(1pq1pq\cdots 1pq1)]$, then

$$\phi([\alpha] \cdot [\beta]) = \phi([\alpha \cdot \beta]) = [(1bc1bc \cdots 1bc11pq1pq \cdots 1pq1)]$$

Discuss the case for the sign of $\phi([\alpha])$ and $\phi([\beta])$ separately gives the desired result.

- Surjectivity: for a given $m \in \mathbb{Z}$, construct α such that $\phi([\alpha]) = m$ is easy.
- Injectivity: suppose that φ([α]) = 0, then by definition of φ, [α] = [(1)] = e, which is the trivial element in E(K, 1).

-

Therefore, ϕ is an isomorphism.

 \bigcirc Actually, we can show that the loop based at 1 given by:

$$\ell \qquad I \to S^1$$

with $t \mapsto e^{2\pi i t}$

is a generator for $\pi_1(S^1, 1)$:

- $\phi([\ell]) = 1$, where $\phi : \pi_1(S^1, 1) \cong \mathbb{Z}$.
- The loop

$$\ell^m: I \to S^1 \quad m \in \mathbb{Z}$$

with $\ell^m(t) = e^{2\pi i m t}$

gives $\phi([\ell^m]) = m$

Corollary 13.4 [Fundamental Theorem of Algebra] All non-constant polynomials in $\mathbb C$ has at least one root in $\mathbb C$

Proof. • Suppose on the contrary that

$$p(x) = a_n x^n + \dots + a_1 x + a_0 \ a_n \neq 0$$

has no roots, then *p* is a mapping from \mathbb{C} to $\mathbb{C} \setminus \{0\}$. It's clear that $\mathbb{C} \setminus \{0\} \simeq \{z \in \mathbb{C} \mid |z| = 1\}$, and therefore

$$\pi_1(\mathbb{C} \setminus \{0\}) = \pi_1(S^1) \cong \mathbb{Z}.$$

• The induced homomorphism *p*^{*} of *p* is given by:

$$p_*: \quad \pi_1(\mathbb{C}) \to \pi_1(\mathbb{C} \setminus \{0\})$$

with $\{e\} \mapsto \mathbb{Z}$

Note that $\pi_1(\mathbb{C})$ is trivial as \mathbb{C} is contractible. Also, $p_*(e) = 0$.

• Consider the inclusion from $C_r = \{z \in \mathbb{C} \mid |z| = r\}$ to \mathbb{C} :

$$i: \quad C_r \to \mathbb{C}$$

with $z \mapsto z$

It satisfies the diagram given below:

As a result, the induced homomorphism i^* of i satisfies the diagram

Or equivalently,

Therefore, $p_* \circ i_*$ is a zero map since $p_*(e) = 0$, i.e., $(p \mid_{C_r})_*$ is a zero homomorphism.

• Then it's natural to study $p \mid_{C_r} : C_r \to \mathbb{C} \setminus \{0\}$. Construct

$$\begin{cases} q(z) = k \cdot z^n, \quad k := \frac{p(r)}{r^n} \text{ is a constant} \\ p(z) = a_n z^n + \dots + a_1 z + a_0 \end{cases}$$

Therefore, p(r) = q(r), and $p|_{C_r}, q|_{C_r} : C_r \to \mathbb{C} \setminus \{0\}$.

– We claim that $p|_{C_r} \simeq q|_{C_r}$ for large *r*. First construct the mapping

$$H: \quad C_r \times [0,1] \to \mathbb{C}$$

with $H(z,t) = tp(z) + (1-t)q(z)$
and $H(z,0) = q(z), H(z,1) = p(z)$

If we want to show *H* is the homotopy between $p|_{C_r}$ and $q|_{C_r}$, it suffices to show that *H* is well-defined, i.e., $H : c_r \times [0,1] \to \mathbb{C} \setminus \{0\}$.

Suppose on the contrary that there exists (z,t) such that

$$(1-t)p(z) + tq(z) = 0, |z| = r, t \in [0,1]$$

Or equivalently,

$$(1-t)(a_n z^n + \dots + a_1 z + a_0) + t \cdot k z^n = 0.$$

Substituting *k* with $p(r)/r^n$ gives

$$a_n z^n + \dots + a_1 z + a_0 = t \left(a_{n-1} z^{n-1} + \dots + a_0 - a_{n-1} \frac{z^n}{r} - \dots - a_1 \frac{z^n}{r^{n-1}} - a_0 \frac{z^n}{r^n} \right)$$

The LHS has leading order *n*, while the RHS has leading order less or equal to n - 1. As $r = |z| \rightarrow \infty$, $t \rightarrow \infty$. Therefore, the equality does not hold in the range $t \in [0, 1]$ when *r* is sufficiently large.

For this choice of r = |z|,

$$H: c_r \times [0,1] \to \mathbb{C} \setminus \{0\}$$

gives the homotopy $p|_{C_r} \simeq q|_{C_r}$.

• Therefore, we imply $(p|_{C_r})_* = (q|_{C_r})_*$. Now we check the mapping $(q|_{C_r})_* : \mathbb{Z} \to \mathbb{Z}$. In particular, we check the value of $(q|_{C_r})_*(e)$, where *e* is the identity in $\pi_1(C_r)$. Here we construct the loop

$$\ell: I \to C_r$$

with $\ell(t) = re^{2\pi i t}$

and therefore $[\ell] = e$. It follows that

$$(q|_{C_r})_*(e) = (q|_{C_r})_*([\ell]) = [q|_{C_r}(\ell)] = q(re^{2\pi it}) = k\cot r^n \cdot e^{2\pi int} \neq 0.$$

Therefore, $(q|_{C_r})_*$ is not a zero homomorphism, i.e., $(p|_{C_r})_* \cong (q|_{C_r})_*$ is not a zero homomorphism, which is a contradiction.