12.6. Wednesday for MAT4002

Reviewing.

• Edge loop based at $b \in V$:

$$\alpha = (b, v_1, \cdots, v_n, b)$$

• Equivalence class of edge loops:

$$[\alpha] = \{\alpha' \mid \alpha' \sim \alpha, \alpha' \text{ is the edge loop based at } b\}$$

Note that $\alpha' \sim \alpha$ if they differ from finitely many elementary contractions or expansions.

For instance, let *K* in the figure below denote a triangle:

Figure 12.1: Triangle K

Then the canonical form of any equivalence form $[\alpha]$ can be expressed as:

$$[\alpha] = [bcabc \cdots ab],$$

where $a, b, c \in \{1, 2, 3\}$ are distinct.

12.6.1. Groups & Simplicial Complices

Proposition 12.6 The $E(K,b) = \{[\alpha] \mid \alpha \text{ is edge loop based at } b\}$ is a group, with the operation

$$[\alpha] * [\beta] = [\alpha \cdot \beta]$$

Proof. 1. Well-definedness of *:

$$\alpha \sim \alpha', \beta \sim \beta' \implies \alpha \cdot \beta \sim \alpha' \cdot \beta'$$

- 2. Associativity is clear.
- 3. The identity is e := [b]: for any edge loop $[\alpha] = [bv_1 \cdots b]$,

$$[\alpha] * e = [bv_1 \cdots v_n b] * [b]$$
$$= [bv_1 \cdots v_n bb]$$
$$= [bv_1 \cdots v_n b] = [\alpha].$$

Also, $e * [\alpha] = [\alpha]$.

4. The inverse of any edge loop $[bv_1 \cdots v_n b]$ is $[bv_n \cdots v_1 b]$:

$$[bv_1 \cdots v_n b]^{-1} * [bv_1 \cdots v_n b] = [bv_n \cdots v_1 bbv_1 \cdots v_n b]$$
$$= [bv_n \cdots v_1 bv_1 \cdots v_n b]$$
$$= [bv_n \cdots v_2 v_1 v_2 \cdots v_n b]$$
$$= \cdots$$
$$= [b]$$

Similarly, $[bv_1 \cdots v_n b] * [bv_1 \cdots v_n b]^{-1} = [b]$.

We will see that for *K* defined in Fig.(12.1), $E(K, 1) \cong \mathbb{Z}$, in the next class.

Theorem 12.5 $E(K,b) \cong \pi_1(|K|,b).$

This is the most difficult theorem that we have faced so far. Let's recall the simplicial approximation proposition first:

R

Proposition 12.7 — Simplicial Approximation Proposition. Suppose that f: $|K| \rightarrow |L|$ be such that for all $v \in V(K)$, there exists $g(v) \in V(L)$ satisfying

$$f(\operatorname{st}_K(v)) \subseteq \operatorname{st}_L(g(v)).$$

As a result,

1. the mapping

$$g: \quad K \to L$$

with $v \mapsto g(v)$

is a simplicial map, i.e., for all $\sigma_K \in \Sigma_K$, $g(\sigma_K) \in \Sigma_L$

2. Moreover, $|g| \simeq f$.

Furthermore, if $A \subseteq K$ is a simplicial subcomplex such that $f(|A|) \subseteq |B|$, where $B \subseteq L$ is a simplicial subcomplex, then we can choose g such that $g|_A: A \to B$ and the homotopy $|g| \simeq f$ sends |A| to |B|.

• Example 12.9 Consider the simplicial complex *K* and *L* shown in the figure below:

Let A_1 denote the subcomplex with $V(A_1) = \{0\}, \Sigma_{A_1} = \emptyset$, and A_2 denote the subcomplex wit $V(A_2) = \{1, 2\}$ and $\Sigma_{A_2} = \{\{1, 2\}\}$. Therefore,

$$f(|A_1|) \subseteq |\Delta_{\{b,c,d\}}|, \quad f(|A_2|) \subseteq |\Delta_{\{a,b,d\}}|,$$

There exists simplicial mapping g with

$$g(0) = b$$
, $g(1) = b$, $g(2) = d$, $g(3) = e$, $g(4) = c$, $g(5) = c$

Proof. 1. For each edge loop $\alpha = (v_0, \dots, v_n)$ based at *b*, consider the simplicial complex

Together with the simplicial map

$$g_{\alpha}: \quad I_{(n)} \to K$$

with $g_{\alpha}(i) = v_i$

Note that it is well-defined since $\{i, i + 1\} \in \Sigma_{I_{(n)}}$, and $\{v_i, v_{i+1}\} \in \Sigma_K$. Now construct the mapping

 $\begin{array}{ll} \theta: & \{ \text{edge loop based at } b \} \to \pi_1(K, b) \\ \text{with} & \alpha \mapsto [|g_{\alpha}|] \\ \text{where} & |g_{\alpha}| : |I_{(n)}| (\cong [0, 1]) \to |K| \\ & |g_{\alpha}|(i/n) = v_i \end{array}$

For example,

$$\alpha = (bdeabcb), \implies |g_{\alpha}|(0) = b, |g_{\alpha}|(1/6) = d, |g_{\alpha}|(2/6) = e, \cdots, |g_{\alpha}|(1) = b,$$

i.e., $|g_{\alpha}|$ is a loop based at *b*.

Therefore, $[|g_{\alpha}|] \in \pi_1(|K|, b)$.

2. Now, suppose $\alpha \sim \alpha'$ be two edge loops differ by an elemenary contraction, e.g.,

$$\alpha' = (bdebcb) \sim \alpha = (bdeabcb).$$

As a result, $|g_{\alpha'}| \simeq |g_{\alpha}|$ relative to {0,1}, i.e., $[|g_{\alpha}|] = [|g_{\alpha'}|]$. Therefore, we have a well-defined map:

$$\tilde{\theta}$$
: {edge loops based at b }/ $\sim \rightarrow \pi_1(|K|, b)$
with $[\alpha] \mapsto [|g_{\alpha}|]$

Therefore, $\tilde{\theta}$: $E(K, b) \rightarrow \pi_1(|K|, b)$ is the desired map.

3. $\tilde{\theta}$ is a homomorphism: it suffices to show that

$$\tilde{\theta}([\alpha] * [\beta]) = \tilde{\theta}([\alpha])\tilde{\theta}([\beta]),$$

which suffices to show $[|g_{\alpha,\beta}|] = [|g_{\alpha}||g_{\beta}|]$, i.e., $|g_{\alpha,\beta}| \simeq |g_{\alpha}||g_{\beta}|$. Note that $|g_{\alpha,\beta}|$ and $|g_{\alpha}||g_{\beta}|$ are the same path with different "speed", i.e., homotopy.

- 4. The mapping $\tilde{\theta}$ is surjective: Let $\ell : [0,1] \to |K|$ be a loop based at *b*. It suffices to find an edge loop α such that $[|g_{\alpha}|] = [\ell]$, i.e., $|g_{\alpha}| \simeq \ell$.
 - (a) Applying the simplicial approximation theorem, there exist large *n* and g : I_(n) → K such that |g| ≃ ℓ. Here we can choose g : I_(n) → K to be such that g({0}) = {b}, g({n}) = {b}, and |g| ≃ ℓ relative to {0, n}.
 - (b) Take $\alpha = (g(0), g(1), \dots, g(n))$ so that g(0) = b = g(n), with $g_{\alpha} = g$. Therefore, $[|g_{\alpha}|] = [\ell]$, and hence $\tilde{\theta}$ is surjective.