12.3. Monday for MAT4002

Proposition 12.3 If b, b' are path connected in *X*, then

$$\pi_1(X,b) \cong \pi_1(X,b')$$

R Last lecture we have given the isomorphism

$$W_{\#}: \quad \pi_1(X,b) \to \pi_1(X,b')$$

with $[\ell] \mapsto [w^{-1} \cdot \ell \cdot w]$

where *w* denotes a path from *b* to b'. The inverse of $W_{\#}$ is given by:

$$W_{\#}^{-1}: \quad \pi_1(X,b') \to \pi_1(X,b)$$

with $[m] \mapsto [w \cdot m \cdot w^{-1}]$

Notation. For path connected space *X*, we will just write $\pi_1(X)$ instead of $\pi_1(X, x)$.

Proposition 12.4 Let (X, x) and (Y, y) be spaces with basepoints x and y, and $f : X \to Y$ be a continuous map with f(x) = y. Then every loop $\ell : I \to X$ based at x gives a loop $f \circ \ell : I \to Y$ based at y, i.e., the continuous map f induces a homomorphism of groups

$$f_*: \quad \pi_1(\pi, x) \to \pi_1(Y, y)$$
$$[\ell] \mapsto [f \circ \ell] := f_*([\ell])$$

Moreover,

- 1. $(id_{X\to X})_* = id_{\pi_1(X,x)\to\pi_1(X,x)}$
- 2. $(g \circ f)_* = g_* \circ f_*$
- 3. If $f \simeq f'$ relative to $x \in X$, then $f_* = (f')_*$

Proof. • Well-definedness: Suppose that $\ell \simeq \ell'$, then $f \circ \ell \simeq f \circ \ell'$ by propositon (9.4). Therefore, $[f \circ \ell] = [f \circ \ell']$. • Homomorphism: It's clear that

$$f \circ (\ell \circ \ell') = (f \circ \ell) \circ (f \circ \ell')$$

Therefore, $f_*[\ell \ell'] = (f_*[\ell]) * (f_*[\ell'])$

The other three statements are obvious.

Proposition 12.5 Let *X*, *Y* be path-connected such that $X \simeq Y$ (i.e., there exists $f : X \to Y$ and $g : Y \to X$ such that $g \circ f \simeq id_X$, $f \circ g \simeq id_Y$). Then $\pi_1(X) \cong \pi_1(Y)$.

In particular, if *X*, *Y* are path-connected with $X \cong Y$, then $\pi_1(X) \cong \pi_1(Y)$

Proof. Consider the mapping

$$\pi_1(X, x_0) \xrightarrow{f_*} \pi_1(Y, y_0) \xrightarrow{g_*} \pi_1(X, x_1)$$

It suffices to show that f_* and g_* are bijective. (The homomorphism follows from proposition (12.4))

Wrong proof: g ∘ f ≃ id_X implies (g ∘ f)_{*} = (id_X)_{*} implies g_{*} ∘ f_{*} = id_{π1(X,x0)}.
 Reason: note that (g ∘ f) ≃ id_X is **not** relative to x₀.

Consider the homotopy $H : g \circ f \simeq id_X$, where $H(x_0, s)$ is not necessarily a constant for $s \in I$. It follows that $H(x_0, 0) = x_1$ and $H(x_0, 1) = x_0$, i.e., $w(s) := H(x_0, s)$ defines a path from x_1 to x_0 .

For any loop $\ell: I \to X$ based at x_0 , consider the homotopy

$$K = H \circ (\ell \times id_I): \quad I \times I \to X$$

where
$$K(t,s) = H((\ell(t),s))$$
$$K(t,0) = H(\ell(t),0) = g \circ f(\ell(t))$$
$$K(t,1) = H(\ell(t),1) = \ell(t)$$
$$K(0,s) = w(s) = K(1,s)$$

The graphic plot of *K* is given in the figure below:

The homotopy between ℓ and $g \circ f \circ \ell$ motivates us to construct a homotopy between ℓ and $w^{-1} \circ g \circ f \circ \ell \circ w$ relative to $\{0,1\}$:

Therefore,

$$[\ell] = [w^{-1}gf\ell w] = W_{\#}([gf\ell]) = (W_{\#} \circ g_* \circ f_*)[\ell]$$

which follows that $W_{\#} \circ g_* \circ f_* = id_{\pi_1(X,x_0)}$. Therfore, f_* is injective, g_* is surjective.

The similar argument gives

$$W_{\#} \circ f_{*} \circ g_{*} = \mathrm{id}_{\pi_{1}(Y, y_{0})}$$

Therefore, f_* is surjective, g_* is injective. The bijectivity is shown.

Definition 12.1 [Simply-Connected] A space X is simply-connected if X is path connected, and X has trivial fundamental group, i.e., $\pi_1(X) = \{e\}$ for some point $e \in X$.

• Example 12.4 If X is contractible, then X is path-connected. By proposition (12.5), since $X \simeq \{e\}$, we imply

$$\pi_1(X) \cong \pi_1(\{e\}) = \{e\}.$$

Therefore, all contractible spaces (e.g., \mathbb{R}^n) are simply-connected.

However, not all simply-connected spaces are contractible, e.g., $\pi_1(S^2) \cong \{e\}$, but S^2 is not homotopy equivalent to a point.

12.3.1. Some basic results on $\pi_1(X, b)$

We will study $\pi_1(X, b)$ for some simplicial complexes.

Definition 12.2 [Edge Loop] Let $K = (V, \Sigma)$ be a simplicial complex.

- 1. An edge path (v_0, \ldots, v_n) is such that
 - (a) $a_i \in V(K)$
 - (b) For each i, $\{a_{i-1}, a_i\}$ spans a simplex of K
- 2. An edge loop is an edge path with $a_n = a_0$.
- 3. Let $\alpha = (v_0, \dots, v_n), \beta = (w_0, \dots, w_m)$ be two edge paths with $v_n = w_0$, then we define

$$\alpha \circ \beta = (v_0, \dots, v_n, w_1, \dots, w_m)$$

Definition 12.3 [Elementary Contraction/Expansion] Let α , β be two edge paths.

1. An elementary contraction of α is a new edge path obtained by performing one of the followings on α :

- Replacing $\cdots a_{i-1}a_i \cdots$ by $\cdots a_{i-1} \cdots$ provided that $a_{i-1} = a_i$
- Replacing $\cdots a_{i-1}a_ia_{i+1}\cdots$ by $\cdots a_{i-1}\cdots$ provided that $a_{i-1} = a_{i+1}$
- Replacing ··· a_{i-1}a_ia_{i+1} ··· by ··· a_{i-1}a_{i+1} ··· provided that {a_{i-1}, a_i, a_{i+1}} spans
 a 2-simplex of K.
- 2. An elementary expansion is the reverse of the elementary contraction.
- 3. Two edge paths α, β are equivalent if α and β differs by a finite sequence of elementary contractions or expansions.