11.6. Wednesday for MAT4002

11.6.1. The fundamental group

Revewing. One example for Homotopy relative to $\{0,1\}$ is illustrated in Fig.(11.4)

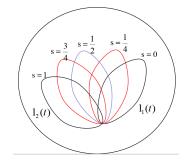


Figure 11.5: Example of homotopy relative to {0,1}

It's **essential** to study homotopy relative to $\{0,1\}$. For example, given a torus with a loop $\ell_1(t)$ and a base point *b*. We want to distinguish $\ell_1(t)$ and $\ell_2(t)$ as shown in Fig.(11.6):

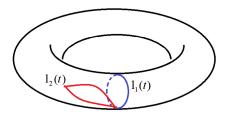


Figure 11.6: Two loops on a torus

Obviously there should be something different between $\ell_1(t)$ and $\ell_2(t)$. "Relative to{0,1} is essential", sicne if we get rid of this condition, all loops are homotopic to the constant map $c_b(t) = b$. See the graphic illustration in Fig.(??):

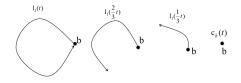


Figure 11.7: homotopy between any loop and constant map

In this case, $\ell \simeq c_b$ for any loop ℓ , there is only one trivial element $\{[c_b]\}$ in $\pi_1(X, b)$.

That's the reason why we define $\pi_1(X, b)$ as the collection of homotopy classes **relative to** {0,1} based at *b* in *X*.

Proposition 11.13 Let $[\cdot]$ denote the homotopy class of loops relative to $\{0,1\}$ based at *b*, and define the operation

$$[\ell] * [\ell'] = [\ell \cdot \ell']$$

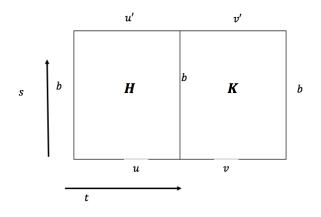
Then $(\pi_1(X, b), *)$ forms a group, where

$$\pi_1(X, b) := \{ [\ell] \mid \ell : [0, 1] \to X \text{ denotes loops based at } b \}$$

Proof. 1. Well-definedness: Suppose that $u \sim u'$ and $v \sim v'$, it suffices to show $u \cdot v \simeq u' \cdot v'$. Consider the given homotopies $H : u \simeq u'$, $K : v \simeq v'$. Construct a new homotopy $L : I \times I \to X$ by

$$L(t,s) = \begin{cases} H(2t,s), & 0 \le t \le 1/2\\ K(2t-1,s), & 1/2 \le t \le 1 \end{cases}$$

The diagram below explains the ideas for constructing *L*. The plane denote the set $I \times I$, and the labels characterize the images of each point of $I \times I$ under *L*.

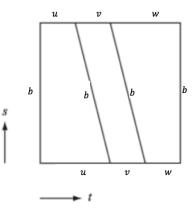


Therefore, $u \cdot v \simeq u' \cdot v'$.

2. Associate: $(u \cdot v) \cdot w \simeq u \cdot (v \cdot w)$

Note that $(u \cdot v) \cdot w$ and $u \cdot (v \cdot w)$ are essentially different loops. Although they go with the same path, they are with different speeds. Generally speaking, the loop $(u \cdot v) \cdot w$ travels u, v using 1/4 seconds, and w in 1/2 seconds; but the loop $u \cdot (v \cdot w)$ travels u in 1/2 seconds, and then v, w in 1/4 seconds.

We want to construct a homotopy that describes the loop changes from $u \cdot (v \cdot w)$ to $(u \cdot v) \cdot w$. A graphic illustration is given below:



An explicit homotopy $H: I \times I \rightarrow X$ is given below:

$$H(t,s) = \begin{cases} u(4t/(2-s)), & 0 \le t \le 1/2 - 1/4s \\ v(4t-2+s), & 1/2 - 1/4s \le t \le 3/4 - 1/4s \\ w(4t-3+s/(1+s)), & 3/4 - 1/4s \le t \le 1 \end{cases}$$

Therefore,

$$[u] * ([v] * [w]) = ([u] * [v]) * [w]$$

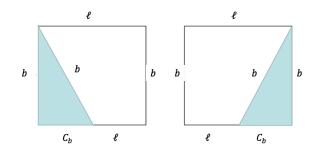
3. Intuitively, the identity should be the constant map, i.e., let $c_b : I \to X$ by $c_b(t) = b, \forall t$, and let $\ell = [c_b]$, it suffices to show

$$[c_b] * [\ell] = [\ell] * [c_b] = [\ell] \iff [c_b \cdot \ell] = [\ell \cdot c_b] = [\ell]$$

Or equivalently,

$$c_b \cdot \ell \simeq \ell, \quad \ell \cdot c_b \simeq \ell$$

The graphic homotopy is shown below. (You should have been understood this diagram)



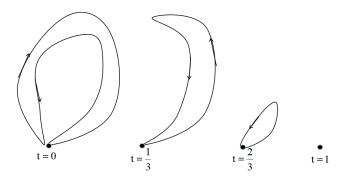
4. Inverse: the inverse of [u], where u is a loop, should be [u'], where u' is the reverse of the traveling of u. Therefore, for all $u : I \to X$ (loop based at b), define $u^{-1} : I \to X$ by $u^{-1}(t) = u(1 - t)$. Note that

$$[u] * [u^{-1}] = [u \cdot u^{-1}], e = [c_b]$$

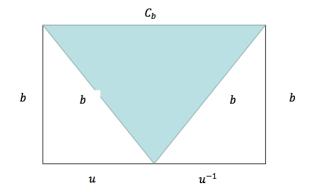
It suffices to show $u \cdot u^{-1} \simeq c_b$ and $u^{-1} \cdot u \simeq c_b$: The homotopy below gives $u \cdot u^{-1} \simeq c_b$, and the $u^{-1} \cdot u \simeq c_b$ follows similarly.

$$H(t,s) = \begin{cases} u(2t(1-s)), & 0 \le t \le 1/2\\ u((2-2t)(1-s)), & 1/2 \le t \le 1 \end{cases}$$

The graphic illustration is given below:



R Note that the figure below does not define a homotopy from $u \cdot u^{-1}$ to c_b !



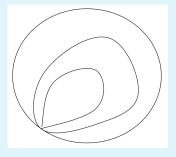
The reason is that for the upper part, as $s \rightarrow 1$, the time for traveling *u* and u^{-1} becomes very small, i.e., a particle has to pass *u* and u^{-1} in infinitely small time, which is not well-defined.

• Example 11.11 The reason why $\pi_1(\mathbb{R}^2, b) = \{e\}$ is trivial:

• For any $u: I \to \mathbb{R}^2$ with u(0) = u(1) = b, consider the homotopy

$$H(t,s) = (1-s)u(t) + sb.$$

Therefore, $u \simeq c_b$ for any loop u based at b. Check the diagram below for graphic illustration of this homotopy.



More generally, if $X \simeq \{x\}$ is contractible, then $\pi_1(X, b) = \{e\}$.

However, $\pi_1(S^1, 1)$ is not trivial. We cannot deform the loop in S^1 into a constant loop. We will see that In fact, $\pi_1(S^1, 1) \cong \mathbb{Z}$.

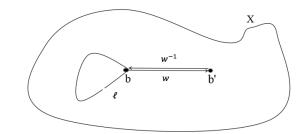
Proposition 11.14 If *b*, *b*' are path-connected in *X*, then $\pi_1(X, b) \cong \pi_1(X, b')$.

Proof. Let w be a path from b to b', and define

$$w_{\#}: \quad \pi_1(X, b) \to \pi_1(X, b')$$

with $[\ell] \mapsto [w^{-1}\ell w]$

1. Well-definedness: Check that $\ell \simeq \ell'$ implies $w^{-1}\ell w \simeq w^{-1}\ell' w$. See the figure below for graphic illustration.



2. $w_{\#}$ is a homomorphism:

$$w_{\#}([\ell_1]) \cdot w_{\#}([\ell_2]) = [w^{-1} \cdot \ell_1 w] \cdot [w^{-1} \cdot \ell_2 w]$$
(11.4a)

$$=[w^{-1} \cdot \ell_1 \ell_2 w]$$
(11.4b)

$$=w_{\#}([\ell_{1}\ell_{2}]) \tag{11.4c}$$

where (11.4b) is because that $w \cdot w^{-1} = c_b$.

3. And $w_{\#}$ is also injective. If loops ℓ_1 , ℓ_2 are such that $w_{\#}(\ell_1) = w_{\#}(\ell_2)$, then

$$[w^{-1}\ell_1 w] = [w^{-1}\ell_2 w],$$

which follows that

$$[\ell_1] = [w][w^{-1}\ell_1w][w^{-1}] = [w][w^{-1}\ell_2w][w^{-1}] = [\ell_2]$$
(11.5)

4. Finally, $w_{\#}$ is surjective, because for any $u \in \pi_1(X, b')$, let $v = wuw^{-1}$, then v is based at b, so $[v] \in \pi_1(X, b)$, and $w_{\#}(v) = [u]$. Therefore $w_{\#}$ is surjective.

In conclusion, $w_{\#}$ is a group isomorphism between $\pi_1(X, b)$ and $\pi_2(X, b)$.

R In (11.5) we extended the meaning of $[\ell]$ to allow ℓ to be a path, and the equivalence class is defined by the relation "~": $\ell_1 \sim \ell_2$ iff they are homotopic relative to {0,1}. The multiplication rules are defined similarly.