
10.3. Monday for MAT4002

Proposition 10.6 — Simplicial Approximation Proposition. Let K and L be two simplifical

complexes, and f : |K | ! |L | be a continuous mapping. If there exists a simplicial

mapping g : K ! L such that f (stK (vvv)) ✓ stL(g(vvv)),8vvv 2 V(K), then

|g | ' f

Recall the definition

stK (vvv) =
ÿ

{inside(�) : � is a simplex of |K | and x 2 �}

Proof. • We first show a statement: Suppose that � = {v0, . . . ,vn} 2 ⌃(K), and x 2

inside(�) ✓ |K |. If f (x) 2 |L | lies in the inside of the (unique) simplex ⌧ 2 ⌃L , then

g(v0), . . . ,g(vn) are vertices of ⌧.

By definition of inside(�), x =
Õn

i=0
↵ivi with ↵i > 0 and

Õn
i=1
↵i = 1. Therefore,

x 2 stK (vi) for i = 1, . . . ,n, where

stK (vi) :=

8>><
>>:

avi +
m’
j=1

bjwj | a > 0, bj > 0,a +

m’
j=1

bj = 1, {vi,w1, . . . ,wm} 2 ⌃K
9>>=
>>;

.

Therefore, f (x) 2 int(stK (vi)) ✓ stL(g(vi)), which follows that

f (x) = ag(vi) +
m’
j=1

bju j , where a > 0, bj > 0,a +

m’
j=1

bj = 1, {g(vi),u1, . . . ,um} 2 ⌃L

Therefore, g(vi) is a vertex of the simplex ⌧, i = 1, . . . ,n. Moreover, {g(v0), . . . ,g(vn)}

spans a simplex, which is a face of ⌧, and therefore {g(v0), . . . ,g(vn)} 2 ⌃L .

• Therefore, the mapping g : K ! L maps simplicies to simplicies, which is a

simplicial mapping. We can construct a homotopy between f and |g | as follows:

Consider any x 2 |K |, and let ⌧ 2 ⌃L be such that f (x) 2 inside(⌧). We write
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x =
Õn

i=0
�ivi for some {v0, . . . ,vn} 2 ⌃K and �i � 0,

Õn
i=1
�i = 1. Applying our claim,

|g |(x) =
n’
i=0

�ig(vi),

where g(v0), . . . ,g(vn) are all vertices of ⌧.

We can directly construct a homotopy between f and |g |. Before that, we need

some reformulations. Since f (x) 2 inside(⌧), we let f (x) =Õm
i=0
µi⌧i . Since |g |(x) =

Õn
i=0
�ig(vi) 2 inside(⌧), we rewrite |g |(x) =Õm

i=0
�0i⌧i. We define the map

H : |K | ⇥ I ! |L |

with (x, t) 7!Õm
i=0

t�0i + (1 � t)µi

which follows that f ' |g |.

⌅

Theorem 10.2 — Simplicial Approximation Theorem. Let K ,L be simplicial complexes

with VK finite, and f : |K | ! |L | be continuous. Then there exists a subdivison |K 0 | of

|K | together with a simplicial map g such that |g | ' f .

Here the way for constructing subdivison |K 0 | is as follows. There exists a constant

� > 0. As long as the coarseness of K
0

is less than �, our constructed subdivision

satisfies the condition.

Proof. The sets {stL(w) | w 2V(L)} forms an open cover of |L |, which implies { f
�1(stL(w))}

forms an open cover of |K |. By compactness, there exists a finite subcover of |K |, de-

noted as

|K | ✓
nÿ
i=1

f
�1(stL(wi))

There exists a small number � > 0 such that for any x, y 2 |K | with d(x, y) < �,

x, y 2 f
�1(stL(wi)) for some i. Then we construct a simplicial subdivision |K 0 | of |K |

with coarseness less than �, i.e., 8x, y 2 stK0(v), d(x, y) < �.

Therefore, stK0(v) ✓ f
�1(stL(wi)) for any v 2V(K ; ) and some wi 2V(L), i.e., f (stK0(v)) ✓

stL(wi).
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Setting g(v) = wi and applying proposition (10.6) gives the desired result. ⌅

10.3.1. Group Presentations
Group is a highlight of our course, which interwises topology and algebra. I assume

that most students have learnt abstract algebra course MAT3004, and encourage those

without this knowledge to read the notes for group posted on blackboard.
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