9.4. Wednesday for MAT 3040

9.4.1. Jordan Normal Form

Theorem 9.3 — Jordan Normal Form. Suppose that 7 : V — V has minimial polyno-
mial

k
mr(x) = | |G- )%,
i=1
then there exists a basis A such that
(T)a,a = diag(J1,..., Je),
where each block J; is a square matrix of the form

i 1

Hi

Hi |

Rr) By primary decomposition theorem,
V=Vi®---®V, whereV;=ker(T-A4,1)%),i=1,...,k,

and each V; is T-invariant.

We pick basis B; for each subspace V;, then 8 := Uf.‘zlﬂi is a basis of V, and

(T |V1)B],Bl O o O
0 (T Iv),8, 0
(T)B’B _ V2)8,,8; '
O e E (T |Vk).(3k/-(5k

with mr Iv, (x) =(x = ;).

Therefore, it suffices to show the Jordan normal form holds for the linear operator
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T with minimal polynomial mr(x) = (x — 1)°.

Firstly, we consider the case where the minimal polynomial has the form x":

Proposition 9.5 Suppose T : V — V is such that mr(x) = x™, then the theorem (9.3)

holds, i.e., there exists a basis A such that

(T)ﬂ,ﬂ = diag('llr e /Jf)/

where each block J; is a square matrix of the form

Proof. e Suppose that mr(x) = x™, then it is clear that
{0} := ker(T?) < ker(T) < ker(T?) < --- < ker(T™) :=V

Furthermore, we have ker(T™1) ¢ ker(T?) for i = 1,...,m: Note that ker(7" 1) ¢
ker(T™) := V due to the minimality of mr(x); and ker(T"2) ¢ ker(T™!) since

otherwise for any x € ker(7™),
T" Y Tx)=0 = Tx cker(T" V) =ker(T"?) = T"2(Tx)=T""(x)=0,

i.e., x € ker(T" 1), which contradicts to the fact that ker(7"1) ¢ ker(7T™). Proceed-

ing this trick sequentially for i =m,m —1,...,1, we proved the disired result.

e Then construct the quotient space W; = ker(T") /ker(T*1) and define B! to be a
basis of W;:

B} = {d} +ker(T'™"),...,a} +ker(T"")}

Construct B; = {aj,...,d} }, then we claim that B := U, B; forms a basis of V:
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— First proof the case m =2 first: let U <V (dim(V) < ), and 81 = {a%,. . .,a}q}

be a basis of U, and

B = {a%+U,...,ai2 +U}

be a basis of V/U. Then to show the statement suffices to show that
2 . .
U{a’l,. . .,a}q} forms a basis of V.
i=1

It’s clear that U?zl {ai,...,aé} spans V. Furthermore, dim(V) = dim(U) +
dim(V/U) = k1 + ky, i.e., Ul?:l{ai, .. .,a;;,} contains correct amount of vectors.

The proof is complete.

— This result can be extended from 2 to general m, thus the claim is shown.
e For i < m, consider the set S; = {T(w;) + ker(T 1) | w j € Biy1}. Note that

- Since T™*Y(w;) =0, T/(T(w;)) = 0, we imply T(w;) € ker(T?), i.e., S; C W;.

— The set §; is linearly independent: consider the equation
D ki(T(w)) + ker(T"™1) = Oy, &= T (Z kjwj) + ker(T"™1) = Oy,
J J
ie.,
T (Z kjwj) eker(1"™) == 17T () kjw))) = Oy,
J J

ie, Xikjw; € ker(T?), i.e.,
D kjwj + ker(T') = Ow,,, = > k;(w; + ker(T")) = Ow,,,.
J J

Since {w; + ker(T"), Vj} fomrs a basis of W;,q, we imply k; =0,V;.

From B;,1 we construct S;, which is linearly independent in W;. Therefore, we

imply |T(Bi11)| < |Bi| for Vi < m (why?).
e Now we start to construct a basis A of V:

- Start with 8, := {u]" + ker(T 1, ... ,u[”; +ker(T 1}, and 8B,, = {u", .. .,u?}n 1.
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— By the previous result,
{T() + ker(T™2),..., T(u} ) +ker(T" )}

is linear independent in W,,_1. By basis extension, we get a basis 8/ | of

W1, and let

B =A{TWy"), ..., T(up )} Uéma

where &,,1 := {uT‘l,. . .,u;":]fll}

— Continue the process above to obtain 8,,_,...,81, and v, Bi forms a basis

of V:

Bl 82 Bm—l Bm
@), )y e )y T AT TEEDY (g )
T2 @), TR @R TR | —1 m—1

C ) & i {7, ..., up hl}
{T(4}),..., T(uz,)} {u?,...,u2)}

{ui, ..., u,)}

— Now construct the ordered basis A:

Tm_l(u;”) .. Tz(ui”) T(ui") uy’
Tm_l(uz,':") Tz(uZ:n) T(u?’;) u?}n
Tm_z(ui"_l) T(u;”_l) u{"‘l
A=

L B A C A

1

U

1

g,
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— Then the diagonal entries of (T) 4,4 should be all zero, since
T Wh) =T ) =0,Yi=1,...,mj=1,...,6,

and every entry on the superdiagonal is 1:

01
01
01
/ 0
T W), - T(ul), ul'} .0 (1) 1
' 01
m—1¢, m 'rrm/ O
{T (u2 ),...,T(’LL2 ),Uz} 01
0
01

O
O
o -

Figure 9.1: Illustration for (T) #,x

Then we consider the case where mr(x) = (x — 2)¢:

Corollary 9.3  Suppose T : V — V is such that my(x) = (x — )¢, then the theorem (9.3)

holds, i.e., there exists a basis A such that

(T)a,5 = diag(J1,...,Je),

where each block J; is a square matrix of the form

Proof. Suppose that mr(x) = (x — 1)°. Consider the operator U :=T — A/, then my(x) = x°.
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By applying proposition (9.5),

(U)ﬂ,ﬂ = diag(‘llf e /Jf)/

where

Or equivalently,

(T a,a — A a,a =diag(Jy,...,J¢)

ie.,
(T)ﬂ,ﬂ = diag(Klr e /Kf)/
where )
A1
A
K=
1

r) The Jordan Normal Form Theorem (9.3) follows from our arguments using

the primary decomposition.
Corollary 9.4 Any matrix A € M,«,,(C) is similar to a matrix of the Jordan normal form

diag(Jy,...,J¢).

9.4.2. Inner Product Spaces
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Definition 9.8 [Bilinear] Let V be a vector space over R. A bilinear form on V is a

mapping
F:VxV->R

satisfying

1. Fu+v,w)=F(u,w)+ F(v,w)
2. F(u,v +w)=F(u,v)+ F(u,w)

3. F(Au,v) = AF(u,v) = F(u,Av)
We say
e F is symmetric if F(u,v)=F(v,u)
e F is non-degenerate if F(u,w) =0 for Yu € V implies w =0

e Fis positive definite if F(v,v) >0 for Vv #0
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