
9.4. Wednesday for MAT3040

9.4.1. Jordan Normal Form
Theorem 9.3 — Jordan Normal Form. Suppose that T : V ! V has minimial polyno-

mial

mT (x) =
k÷
i=1

(x � �i)ei ,

then there exists a basis A such that

(T)A,A = diag(J1, . . . , J`),

where each block Ji is a square matrix of the form

Ji =

2666666666664

µi 1

µi
. . .
. . . 1

µi

3777777777775

.

R By primary decomposition theorem,

V = V1 � · · · � Vk , where Vi = ker((T � �i I)ei ), i = 1, . . . , k,

and each Vi is T-invariant.

We pick basis Bi for each subspace Vi, then B := [k
i=1Bi is a basis of V , and

(T)B,B =

©≠≠≠≠≠≠≠≠
´

(T |V1)B1,B1 0 · · · 0

0 (T |V2)B2,B2

... 0
... . . . ...

...

0 · · · ... (T |Vk )Bk ,Bk

™ÆÆÆÆÆÆÆÆ
¨

with mT |Vi
(x) = (x � �i)ei .

Therefore, it suffices to show the Jordan normal form holds for the linear operator
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T with minimal polynomial mT (x) = (x � �)e.

Firstly, we consider the case where the minimal polynomial has the form xm:

Proposition 9.5 Suppose T : V ! V is such that mT (x) = xm, then the theorem (9.3)

holds, i.e., there exists a basis A such that

(T)A,A = diag(JJJ1, . . . , JJJ`),

where each block Ji is a square matrix of the form

Ji =

2666666666664

0 1

0 . . .
. . . 1

0

3777777777775

.

Proof. • Suppose that mT (x) = xm, then it is clear that

{0} := ker(T0)  ker(T)  ker(T2)  · · ·  ker(Tm) := V

Furthermore, we have ker(T i�1) $ ker(T i) for i = 1, . . . ,m: Note that ker(Tm�1) $

ker(Tm) := V due to the minimality of mT (x); and ker(Tm�2) $ ker(Tm�1) since

otherwise for any xxx 2 ker(Tm),

Tm�1(T xxx) = 000 =) T xxx 2 ker(Tm�1) = ker(Tm�2) =) Tm�2(T xxx) = Tm�1(xxx) = 000,

i.e., xxx 2 ker(Tm�1), which contradicts to the fact that ker(Tm�1) $ ker(Tm). Proceed-

ing this trick sequentially for i = m,m � 1, . . . ,1, we proved the disired result.

• Then construct the quotient space Wi = ker(T i)/ker(T i�1) and define B 0
i to be a

basis of Wi:

B 0
i = {ai1 + ker(T i�1), . . . ,ai`i + ker(T i�1)}

Construct Bi = {ai1, . . . ,ai`i }, then we claim that B := [m
i=1Bi forms a basis of V :

235



– First proof the case m = 2 first: let U  V (dim(V) <1), and B1 = {a1
1, . . . , a1

k1
}

be a basis of U, and

B 0
2 = {a2

1 +U, . . . ,a2
k2
+U}

be a basis of V/U. Then to show the statement suffices to show that

2ÿ
i=1

{ai1, . . . ,aiki } forms a basis of V .

It’s clear that [2
i=1{ai1, . . . ,aiki } spans V . Furthermore, dim(V) = dim(U) +

dim(V/U) = k1 + k2, i.e., [2
i=1{ai1, . . . ,aiki } contains correct amount of vectors.

The proof is complete.

– This result can be extended from 2 to general m, thus the claim is shown.

• For i < m, consider the set Si = {T(www j) + ker(T i�1) | www j 2 Bi+1}. Note that

– Since T i+1(www j) = 000, T i(T(www j)) = 000, we imply T(www j) 2 ker(T i), i.e., Si ✓ Wi.

– The set Si is linearly independent: consider the equation

’
j

k j(T(www j) + ker(T i�1)) = 000Wi () T

 ’
j

k jwww j

!
+ ker(T i�1) = 000Wi

i.e.,

T

 ’
j

k jwww j

!
2 ker(T i�1)() T i�1(T(

’
j

k jwww j)) = 000V ,

i.e.,
Õ

j k jwww j 2 ker(T i), i.e.,

’
j

k jwww j + ker(T i) = 000Wi+1 ()
’
j

k j(www j + ker(T i)) = 000Wi+1 .

Since {www j + ker(T i), 8 j} fomrs a basis of Wi+1, we imply k j = 0,8 j.

From Bi+1 we construct Si, which is linearly independent in Wi. Therefore, we

imply |T(Bi+1)|  |Bi | for 8i < m (why?).

• Now we start to construct a basis A of V :

– Start with B 0
m := {um

1 +ker(Tm�1), . . . ,um
`m
+ker(Tm�1)}, and Bm = {um

1 , . . . ,um
`m

}.
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– By the previous result,

{T(um
1 ) + ker(Tm�2), . . . ,T(um

`m
) + ker(Tm�2)}

is linear independent in Wm�1. By basis extension, we get a basis B 0
m�1 of

Wm�1, and let

Bm�1 = {T(um
1 ), . . . ,T(um

`m
)} [ ⇠m�1

where ⇠m�1 := {um�1
1 , . . . ,um�1

`m�1
}

– Continue the process above to obtain Bm�2, . . . ,B1, and [m
i=1Bi forms a basis

of V :

– Now construct the ordered basis A:

A =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Tm�1(um
1 ) · · · T2(um

1 ) T(um
1 ) um

1
...

... . . . ...
...

Tm�1(um
`m
) · · · T2(um

`m
) T(um

`m
) um

`m

Tm�2(um�1
1 ) · · · T(um�1

1 ) um�1
1

... . . . ...
...

Tm�2(um�1
`m�1

) · · · T(um�1
`m�1

) um�1
`m�1

... . . . ...

u1
1
...

u1
`1

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;
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– Then the diagonal entries of (T)A,A should be all zero, since

T(T i�1(uij)) = T i(uij) = 0,8i = 1, . . . ,m, j = 1, . . . ,`i,

and every entry on the superdiagonal is 1:

Figure 9.1: Illustration for (T)A,A

⌅

Then we consider the case where mT (x) = (x � �)e:

Corollary 9.3 Suppose T : V ! V is such that mT (x) = (x � �)e, then the theorem (9.3)

holds, i.e., there exists a basis A such that

(T)A,A = diag(J1, . . . , J`),

where each block Ji is a square matrix of the form

Ji =

2666666666664

� 1

�
. . .
. . . 1

�

3777777777775

.

Proof. Suppose that mT (x) = (x � �)e. Consider the operator U :=T � �I, then mU (x) = xe.
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By applying proposition (9.5),

(U)A,A = diag(JJJ1, . . . , JJJ`),

where

Ji =

2666666666664

0 1

0 . . .
. . . 1

0

3777777777775

.

Or equivalently,

(T)A,A � �(I)A,A = diag(JJJ1, . . . , JJJ`)

i.e.,

(T)A,A = diag(KKK1, . . . , KKK`),

where

KKK i =

2666666666664

� 1

�
. . .
. . . 1

�

3777777777775
⌅

R The Jordan Normal Form Theorem (9.3) follows from our arguments using

the primary decomposition.

Corollary 9.4 Any matrix A 2 Mn⇥n(C) is similar to a matrix of the Jordan normal form

diag(JJJ1, . . . , JJJ`).

9.4.2. Inner Product Spaces
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Definition 9.8 [Bilinear] Let V be a vector space over R. A bilinear form on V is a

mapping

F : V ⇥V ! R

satisfying

1. F(uuu + vvv,www) = F(uuu,www) + F(vvv,www)

2. F(uuu,vvv + www) = F(uuu,vvv) + F(uuu,www)

3. F(�uuu,vvv) = �F(uuu,vvv) = F(uuu,�vvv)

We say

• F is symmetric if F(uuu,vvv) = F(vvv,uuu)

• F is non-degenerate if F(uuu,www) = 000 for 8uuu 2 V implies www = 0

• F is positive definite if F(vvv,vvv) > 0 for 8vvv , 000

⌅
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