Chapter 8

Week8

8.1. Monday for MAT3040

Reviewing.

o If Xr(x)=(x—A1)---(x —Ay), then

0 )LQ X
(T)aa=

0 X

0 0 An

for some basis A. In other words, T is triangularizable with the diagonal entries

Al,...,An.

r) I hope you appreciate this result. Consider the example below: In linear

algebra we have studied that the matrix A = is not diagonalizable,
01

and the characteristic polynomial is given by
Xa(x) = (x—1)%

However, the theorem above claims that A is triangularizable, with diagonal
entries 1 and 1. The diagonalization of A only uses the eigenvector of A,
but the 1-eigenspace has only 1 dimension. Fortunately, the triangularization

gives a rescue such that we can make use of the generalized eigenvector
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(0,1)T (but not an eigenvector) of A by considering the mapping below:

1
0

U = span
A v/u—-v/u

Here (0, 1)T + U is an eigenvector of A, with eigenvalue 1.

Theorem 8.1  The linear operator T is triangularizable with diagonal entries (A1,...,A,)

if and only if

Xr=(x—A1) - (x—Ap)

Proof. 1t suffices to show only the sufficiency. Suppose that there exists basis .4 such

that
A X X X
0 Az X
(T)aa=
0 X
0 0 An

Then we compute the characteristic polynomial directly:

Xr(x) = det[(x] — T)4,4]

X — M X X X
0 X—Ay .- X
= det
0 X
O 0 x_An
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8.1.1. Cayley-Hamiton Theorem

Proposition 8.1 — A Useful Lemma. Suppose that X7(x) = (x — A1) - (x — A,), then

Xr(T) = 0.

Proof. Since X1(x) = (x — A1) - (x — Ay), we imply T is triangularizable under some

basis A. Note that
e T+ (T)4.4 is an isomorphism between Hom(V, V) and M, (F),

o (ToTo---0T)4a=[(T)4u]", for any m,
m times

It suffices to show X7((T) 4 4) is the zero matrix (why?):

Xr((T)a4) = ((T) a4 — MI) - ((T) 4,4 — Anl).

Observe the matrix multiplication

X1 X1
A — A X X X
Xi 0 A=A - X Xi
((T)aa—NiI) = € span{e;,
0 0 X 0
0 0 An - )\1
0 0

Therefore, forany v € V,

((T) 44 — Anl)v € span{ey,...,e4-1}.

Applying the same trick, we conclude that

(T)aa —MI)---((T)aga — Aul)p =0, YoevV,

ie, Xr((T)aa) = ((T)ga—AI)---((T) 4.4 — Aul) is a zero matrix.

Now we are ready to give a proof for the Cayley-Hamiton Theorem:
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Proof. Suppose that Xr(x) = x" 4+ a,_1x" ! + - + a9 € F[x]. By considering algebri-
cally closed field F O FF, we imply

Xr(x)=x"+ Ay 1x" 1 g (8.1a)

=(x—=A1)--(x=Au), A EF (8.1b)

By applying proposition (8.1), we imply X7(T) = 0, where the coefficients in the
formula X7(T) =0 w.r.t. T are in F.

Then we argue that these coefficients are essentially in IF. Expand the whole map

of X1 (T):
Xr(T) = (T = MI)--- (T — AI) (8.2a)
=T — (M4 AT L 1 (D) "Ag - AL (8.2b)
=T"+a, 1 T" '+ +agl (8.2¢)

where the derivation of (8.2¢) is because that the polynomial coefficients for (8.1a) and
(8.1b) are all identical.
Therefore, we conclude that X7(T) = 0, under the field F. [ ]

Corollary 8.1  m7(x) | X7(x). More precisely, if

Xr(x) = [p1(x)] - [pe(x)]*, & > O,Vi
where p;'s are distinct, monic, and irreducible polynomials. Then

mr(x) = [p1 ()1 - [pr(x)]F+, for some 0 < f; <e;, Vi

Proof. The statement mr(x) | Xr(x) is from Cayley-Hamiton Theorem. Therefore, 0 <
fi <e;,Vi. Suppose on the contrary that f; =0 for some i. wl.o.g., i =1.

It’s clear that gcd(p1,pj) = 1 for Vj # 1, which implies

a(x)p1(x) +b(x)p;(x) =1, for some a(x),b(x) € F[x].
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Considering the field extension F O IF, we have p;(x) = (x — p1) -+ (x — py). For

any root y,, of p, m=1,...,¢, we have

a(pm)p1(pm) + b(pm) pj(pm) =1 = b(pm)pj(pm) =1 = pj(pm) #0,

i.e., i is not a root of p;, Vj # 1.
Therefore, y,, is a root of X7 (x), but not a root of mr(x). Then p,, is an eigenvalue
of T, e.g., Tv =y, v for some v # 0. Recall that mr, = x — py, we imply mr 5 = x — pp, |

mr(x), which is a contradiction. |

m Example 8.1 We can use Corollary (8.1), a stronger version of Cayley-Hamiltion

Theorem to determine the minimal polynomials:

0 -1
1. For matrix A = , we imply X4 (x) = (x> +x+1)%. Since x> + x + 1 is
1 1

irreducible in R, we have m4(x) = x>+ x + 1.

2. For matrix

o o O B

S = =
S N O O
N © O O

we imply X4(x) = (x — 1)%(x — 2)2.
By Corollary (8.1), we imply both (x — 1) and (x — 2) should be roots of mr(x),

i.e., m4(x) may have the four options:

(x —1)%(x —2)?, or
(x —1)(x —2)%, or
(x —1)3(x —2), or

(x—1)(x—2).
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8.1.2. Primary Decomposition Theorem

We know that not every linear operator is diagonalizable, but diagonalization has some

nice properties:

Definition 8.1 [diagonalizable] The linear operator T : V — V is diagonalizable over F if

and only if there exists a basis A of V such that

(T).a,.4 = diag(A1,...,An),

where A;'s are not necessarily distinct. u

Proposition 8.2  If the linear operator T : V — V is diagonalizable, then

mr(x) = (x — pa) - (x = ),
where y;’s are distinct.
Proof. Suppose T is diagonalizable, then there exists a basis .4 of V such that
(T) a4 =diag(p1, -, 1,12, W20 M- - - i)

It's clear that ((T) 44 —pal) - ((T)aa — mxI) =0, ie, mp(x) | (x — p1) -+~ (x — pg)-
Then we show the minimality of (x — pq) -+ (x — pg). In particular, if (x — ;) is

omitted for any 1 <i <k, then it’s easy to show

(Taa—mI) - (Taa— pisa)(Taa — pigal) - (Taa—ml) #0,

since all y;’s are distinct. Therefore, mr(x) will not divide (x — pq) -+ (x — pj—1)(x —

fiy1)- - (x — i) for any i, ie.,

mr(x) = (x —p1) - (x — pg)
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r) The converse of proposition (8.2) is also true, which is a special case for the

Primary Decomposition Theorem.

Theorem 8.2 — Primary Decomposition Theorem. Let T:V — V be a linear operator
with
mr(x) = [pr(x)]" - - [pe(x)]%,
where p;’s are distinct, monic, and irreducible polynomials. Let V; = ker([p;(x)]%) <
V,i=1,...,k, then
1. Each V; is T-invariant (T(V;) <V;)

2.V=VieWVd---aV;
3. Consider T |y.: V; = Vj, then

mT|Vi(x) = [pi(x)]*
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