Chapter 8

Week8

8.1. Monday for MAT3040

Reviewing.

• If
$$\mathcal{X}_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$$
, then

$$(T)_{\mathcal{A},\mathcal{A}} = \begin{pmatrix} \lambda_1 & \times & \times & \times \\ 0 & \lambda_2 & \cdots & \times \\ 0 & \cdots & \ddots & \times \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

for some basis A. In other words, T is **triangularizable** with the diagonal entries $\lambda_1, \ldots, \lambda_n$.

R I hope you appreciate this result. Consider the example below: In linear algebra we have studied that the matrix $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ is not diagonalizable, and the characteristic polynomial is given by

$$\mathcal{X}_A(x) = (x-1)^2.$$

However, the theorem above claims that A is *triangularizable*, with diagonal entries 1 and 1. The diagonalization of A only uses the eigenvector of A, but the 1-eigenspace has only 1 dimension. Fortunately, the triangularization gives a rescue such that we can make use of the generalized eigenvector

 $(0,1)^{\mathrm{T}}$ (but not an eigenvector) of **A** by considering the mapping below:

$$U = \operatorname{span} \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$$

$$\bar{A}: \quad V/U \to V/U$$

Here $(0,1)^{T} + U$ is an eigenvector of \overline{A} , with eigenvalue 1.

Theorem 8.1 The linear operator *T* is triangularizable with diagonal entries $(\lambda_1, ..., \lambda_n)$ if and only if

$$\mathcal{X}_T = (x - \lambda_1) \cdots (x - \lambda_n)$$

Proof. It suffices to show only the sufficiency. Suppose that there exists basis A such that

$$(T)_{\mathcal{A},\mathcal{A}} = \begin{pmatrix} \lambda_1 & \times & \times & \times \\ 0 & \lambda_2 & \cdots & \times \\ 0 & \cdots & \ddots & \times \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Then we compute the characteristic polynomial directly:

$$\mathcal{X}_{T}(x) = \det[(xI - T)_{\mathcal{A},\mathcal{A}}]$$

$$= \det \begin{pmatrix} x - \lambda_{1} & \times & \times & \times \\ 0 & x - \lambda_{2} & \cdots & \times \\ 0 & \cdots & \ddots & \times \\ 0 & 0 & \cdots & x - \lambda_{n} \end{pmatrix}$$

$$= (x - \lambda_{1}) \cdots (x - \lambda_{n})$$

8.1.1. Cayley-Hamiton Theorem

Proposition 8.1 — A Useful Lemma. Suppose that $\mathcal{X}_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$, then $\mathcal{X}_T(T) = 0$.

Proof. Since $\mathcal{X}_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$, we imply *T* is triangularizable under some basis \mathcal{A} . Note that

- $T \mapsto (T)_{\mathcal{A},\mathcal{A}}$ is an isomorphism between $\operatorname{Hom}(V,V)$ and $M_{n \times n}(\mathbb{F})$,
- $(\underbrace{T \circ T \circ \cdots \circ T}_{m \text{ times}})_{\mathcal{A},\mathcal{A}} = [(T)_{\mathcal{A},\mathcal{A}}]^m$, for any m,

It suffices to show $\mathcal{X}_T((T)_{\mathcal{A},\mathcal{A}})$ is the zero matrix (why?):

$$\mathcal{X}_T((T)_{\mathcal{A},\mathcal{A}}) = ((T)_{\mathcal{A},\mathcal{A}} - \lambda_1 \mathbf{I}) \cdots ((T)_{\mathcal{A},\mathcal{A}} - \lambda_n \mathbf{I})$$

Observe the matrix multiplication

$$((T)_{\mathcal{A},\mathcal{A}} - \lambda_i \mathbf{I}) \begin{pmatrix} x_1 \\ \vdots \\ x_i \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} \lambda_1 - \lambda_i & \times & \times & \times \\ 0 & \lambda_2 - \lambda_i & \cdots & \times \\ 0 & \ddots & \ddots & \times \\ 0 & 0 & \cdots & \lambda_n - \lambda_i \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_i \\ 0 \\ \vdots \\ 0 \end{pmatrix} \in \operatorname{span}\{\mathbf{e}_1, \dots, \mathbf{e}_{i-1}\}$$

Therefore, for any $\boldsymbol{v} \in V$,

$$((T)_{\mathcal{A},\mathcal{A}} - \lambda_n \mathbf{I}) \mathbf{v} \in \operatorname{span} \{ \mathbf{e}_1, \dots, \mathbf{e}_{n-1} \}.$$

Applying the same trick, we conclude that

$$((T)_{\mathcal{A},\mathcal{A}} - \lambda_1 I) \cdots ((T)_{\mathcal{A},\mathcal{A}} - \lambda_n I) \boldsymbol{v} = \boldsymbol{0}, \quad \forall \boldsymbol{v} \in V,$$

i.e., $\mathcal{X}_T((T)_{\mathcal{A},\mathcal{A}}) = ((T)_{\mathcal{A},\mathcal{A}} - \lambda_1 \mathbf{I}) \cdots ((T)_{\mathcal{A},\mathcal{A}} - \lambda_n \mathbf{I})$ is a zero matrix.

Now we are ready to give a proof for the Cayley-Hamiton Theorem:

Proof. Suppose that $\mathcal{X}_T(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{F}[x]$. By considering algebrically closed field $\overline{\mathbb{F}} \supseteq \mathbb{F}$, we imply

$$\mathcal{X}_T(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$$
 (8.1a)

$$= (x - \lambda_1) \cdots (x - \lambda_n), \quad \lambda_i \in \overline{\mathbb{F}}$$
(8.1b)

By applying proposition (8.1), we imply $\mathcal{X}_T(T) = 0$, where the coefficients in the formula $\mathcal{X}_T(T) = 0$ w.r.t. *T* are in $\overline{\mathbb{F}}$.

Then we argue that these coefficients are essentially in \mathbb{F} . Expand the whole map of $\mathcal{X}_T(T)$:

$$\mathcal{X}_T(T) = (T - \lambda_1 I) \cdots (T - \lambda_n I)$$
(8.2a)

$$= T^{n} - (\lambda_{1} + \dots + \lambda_{n})T^{n-1} + \dots + (-1)^{n}\lambda_{1}\cdots\lambda_{n}I$$
(8.2b)

$$= T^{n} + a_{n-1}T^{n-1} + \dots + a_{0}I$$
(8.2c)

where the derivation of (8.2c) is because that the polynomial coefficients for (8.1a) and (8.1b) are all identical.

Therefore, we conclude that $\mathcal{X}_T(T) = 0$, under the field \mathbb{F} .

Corollary 8.1 $m_T(x) \mid \mathcal{X}_T(x)$. More precisely, if

$$\mathcal{X}_T(x) = [p_1(x)]^{e_1} \cdots [p_k(x)]^{e_k}, e_i > 0, \forall i$$

where p_i 's are distinct, monic, and irreducible polynomials. Then

$$m_T(x) = [p_1(x)]^{f_1} \cdots [p_k(x)]^{f_k}$$
, for some $0 < f_i \le e_i, \forall i$

Proof. The statement $m_T(x) \mid \mathcal{X}_T(x)$ is from Cayley-Hamiton Theorem. Therefore, $0 \le f_i \le e_i, \forall i$. Suppose on the contrary that $f_i = 0$ for some *i*. w.l.o.g., i = 1.

It's clear that $gcd(p_1, p_j) = 1$ for $\forall j \neq 1$, which implies

$$a(x)p_1(x) + b(x)p_i(x) = 1$$
, for some $a(x), b(x) \in \mathbb{F}[x]$.

Considering the field extension $\overline{\mathbb{F}} \supseteq \mathbb{F}$, we have $p_1(x) = (x - \mu_1) \cdots (x - \mu_\ell)$. For any root μ_m of p_1 , $m = 1, \dots, \ell$, we have

$$a(\mu_m)p_1(\mu_m)+b(\mu_m)p_j(\mu_m)=1 \implies b(\mu_m)p_j(\mu_m)=1 \implies p_j(\mu_m)\neq 0,$$

i.e., μ_m is not a root of p_j , $\forall j \neq 1$.

Therefore, μ_m is a root of $\mathcal{X}_T(x)$, but not a root of $m_T(x)$. Then μ_m is an eigenvalue of *T*, e.g., $T\mathbf{v} = \mu_m \mathbf{v}$ for some $\mathbf{v} \neq \mathbf{0}$. Recall that $m_{T,\mathbf{v}} = x - \mu_m$, we imply $m_{T,\mathbf{v}} = x - \mu_m \mid m_T(x)$, which is a contradiction.

Example 8.1 We can use Corollary (8.1), a stronger version of Cayley-Hamiltion Theorem to determine the minimal polynomials:

1. For matrix $\mathbf{A} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}$, we imply $\mathcal{X}_A(x) = (x^2 + x + 1)^1$. Since $x^2 + x + 1$ is

irreducible in \mathbb{R} , we have $m_A(x) = x^2 + x + 1$.

2. For matrix

$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{pmatrix},$$

we imply $\mathcal{X}_A(x) = (x-1)^2(x-2)^2$.

By Corollary (8.1), we imply both (x - 1) and (x - 2) should be roots of $m_T(x)$, i.e., $m_A(x)$ may have the four options:

$$(x-1)^{2}(x-2)^{2}$$
, or
 $(x-1)(x-2)^{2}$, or
 $(x-1)^{2}(x-2)$, or
 $(x-1)(x-2)$.

8.1.2. Primary Decomposition Theorem

We know that not every linear operator is diagonalizable, but diagonalization has some nice properties:

Definition 8.1 [diagonalizable] The linear operator $T: V \to V$ is diagonalizable over \mathbb{F} if and only if there exists a basis \mathcal{A} of V such that

$$(T)_{\mathcal{A},\mathcal{A}} = \operatorname{diag}(\lambda_1,\ldots,\lambda_n),$$

where λ_i 's are not necessarily distinct.

Proposition 8.2 If the linear operator $T: V \rightarrow V$ is diagonalizable, then

$$m_T(x) = (x - \mu_1) \cdots (x - \mu_k),$$

where μ_i 's are **distinct**.

Proof. Suppose *T* is diagonalizable, then there exists a basis A of *V* such that

$$(T)_{\mathcal{A},\mathcal{A}} = \operatorname{diag}(\mu_1,\ldots,\mu_1,\mu_2,\ldots,\mu_2,\ldots,\mu_k,\ldots,\mu_k)$$

It's clear that $((T)_{\mathcal{A},\mathcal{A}} - \mu_1 \mathbf{I}) \cdots ((T)_{\mathcal{A},\mathcal{A}} - \mu_k \mathbf{I}) = \mathbf{0}$, i.e., $m_T(x) \mid (x - \mu_1) \cdots (x - \mu_k)$.

Then we show the minimality of $(x - \mu_1) \cdots (x - \mu_k)$. In particular, if $(x - \mu_i)$ is omitted for any $1 \le i \le k$, then it's easy to show

$$(T_{\mathcal{A},\mathcal{A}} - \mu_1 \mathbf{I}) \cdots (T_{\mathcal{A},\mathcal{A}} - \mu_{i-1} \mathbf{I}) (T_{\mathcal{A},\mathcal{A}} - \mu_{i+1} \mathbf{I}) \cdots (T_{\mathcal{A},\mathcal{A}} - \mu_k \mathbf{I}) \neq \mathbf{0},$$

since all μ_i 's are distinct. Therefore, $m_T(x)$ will not divide $(x - \mu_1) \cdots (x - \mu_{i-1})(x - \mu_{i+1}) \cdots (x - \mu_k)$ for any *i*, i.e.,

$$m_T(x) = (x - \mu_1) \cdots (x - \mu_k)$$

The converse of proposition (8.2) is also true, which is a special case for the Primary Decomposition Theorem.

Theorem 8.2 — **Primary Decomposition Theorem.** Let $T: V \rightarrow V$ be a linear operator with

$$m_T(x) = [p_1(x)]^{e_1} \cdots [p_k(x)]^{e_k},$$

where p_i 's are distinct, monic, and irreducible polynomials. Let $V_i = \text{ker}([p_i(x)]^{e_i}) \le V, i = 1, ..., k$, then

- 1. Each V_i is *T*-invariant $(T(V_i) \le V_i)$
- 2. $V = V_1 \oplus V_2 \oplus \cdots \oplus V_k$

 (\mathbf{R})

3. Consider $T \mid_{V_i} : V_i \to V_i$, then

 $m_{T|V_i}(x) = [p_i(x)]^{e_i}$