7.4. Wednesday for MAT3040

Reviewing.

- Given the polynomial $f(x) \in \mathbb{F}[x]$, we extend it into the linear operator f(T): $V \to V$.
- The minimal polynomial $m_T(x)$ is defined to be the polynomial with least degree such that

$$m_T(T) = \mathbf{0}_{V \to V},$$

i.e., $[m_T(T)]\boldsymbol{v} = 0_{\boldsymbol{V}}, \forall \boldsymbol{v} \in V.$

The minimial polynomial of a vector *v* relative to *T* is defined to be the polynomial *m*_{T,v}(*x*) with the least degree such that

$$m_{T,\boldsymbol{v}}(T)(\boldsymbol{v})=0$$

- If $f(T) = \mathbf{0}_{V \to V}$, then we imply $m_T(x) \mid f(x)$. If $[g(T)](\boldsymbol{w}) = 0_V$, following the similar argument, we imply $m_{T,\boldsymbol{w}}(x) \mid g(x)$.
- In particular, $m_T(T)\boldsymbol{w} = \boldsymbol{0}$, which implies $m_{T,\boldsymbol{w}}(x) \mid m_T(x)$.

7.4.1. Cayley-Hamiton Theorem

Let's raise an motivative example first:

• Example 7.7 Consider the matrix and its induced mapping $\boldsymbol{A} = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$. It has the characteristic polynomial

$$\mathcal{X}_A = (x-1)(x-2)$$

• Note that $m_A(x)$ cannot be with degree one, since otherwise $m_A(x) = x - k$ with

some k, and

$$m_A(\boldsymbol{A}) = \boldsymbol{A} - k \boldsymbol{I} = \begin{pmatrix} 1-k & 0 \\ 0 & 2-k \end{pmatrix} \neq \boldsymbol{0}, \quad \forall k,$$

which is a contradiction.

• However, one can verify that the $m_A(x)$ is with degree 2:

$$m_A(x) = (x-1)(x-2).$$

• The minimial polynomial with eigenvectors can be with degree 1:

$$\boldsymbol{w} = [0,1]^{\mathrm{T}} \implies (A-2I)\boldsymbol{w} = \boldsymbol{0} \implies m_{A,\boldsymbol{w}}(x) = x-2$$

R More generally, given an eigen-pair $(\lambda, \boldsymbol{v})$, the minimal polynomial of an \boldsymbol{v} has the explicit form

$$m_{T,\boldsymbol{v}}(x) = (x - \lambda) \implies (x - \lambda) \mid m_T(x)$$

Now we want to relate the characteristic polynomial $m_T(x)$ with $\mathcal{X}_T(x)$. Suppose that

$$\mathcal{X}_T(x) = (x - \lambda_1)^{e_1} \cdots (x - \lambda_k)^{e_k} \in \mathbb{F}[x].$$
(7.1)

Then we imply

- λ_i is an eigenvalue of *T*;
- $(x \lambda_i) \mid m_T(x);$

which implies that $(x - \lambda_1) \cdots (x - \lambda_k) \mid m_T(x)$.

Furthermore, does $m_T(x)$ possess other factors? In other words, does $(x - \lambda_i)^{f_i} | m_T(x)$ when $f_i > e_i$? Answer: No.

Theorem 7.1 — Cayley-Hamilton. $m_T(x) \mid \mathcal{X}_T(x)$. In particular, $\mathcal{X}_T(T) = \mathbf{0}$.

The nice equality in (7.1) does not necessarily hold. Sometimes $\mathcal{X}_T(x)$ cannot be factorized into linear factors in $\mathbb{F}[x]$, e.g., $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ in \mathbb{R} .

However, for every $f(x) \in \mathbb{F}[x]$, we can extend \mathbb{F} into the algebraically closed set $\overline{F} \supseteq \mathbb{F}$ such that

$$f(x) = (x - \lambda_1)^{e_1} \cdots (x - \lambda_k)^{e_k}$$

where $\lambda_i \in \overline{\mathbb{F}}$.

For example, for $f(x) = x^2 + 1 \in \mathbb{R}[x]$, we can extend \mathbb{R} into \mathbb{C} to obtain

$$f(x) = (x+i)(x-i).$$

Therefore, the general proof outline for the Cayley-Hamilton Theorem is as follows:

- Consider the case where $m_T(x)$, $\mathcal{X}_T(x)$ are both in $\overline{F}[x]$
- Show that $m_T(x) \mid \mathcal{X}_T(x)$ under $\overline{F}[x]$.

Before the proof, let's study the invariant subspaces, which leads to the decomposition of charactersitc polynomial:

Assumption. From now on, we assume that V is finite dimensional by default.

Definition 7.11 [Invariant Subspace] An invariant subspace of a linear operator T: $V \rightarrow V$ is a subspace $W \leq V$ that is preserved by T, i.e., $T(W) \subseteq W$. We also call W as *T*-invariant.

Example 7.8 1. V itself is T-invariant.

- 2. For the eigenvalue λ , the associated λ -eigenspace $U = \ker(T \lambda I)$ is T-invariant.
- 3. More generally, U = ker(g(T)) is T-invariant for any polynomial g:

If $\boldsymbol{v} \in \ker(g(T))$, i.e., $g(T)\boldsymbol{v} = \boldsymbol{0}$, it suffices to show $T(\boldsymbol{v}) \in \ker(g(T))$:

$$g(T)[T(\boldsymbol{v})] = (a_m T^m + \dots + a_0 I)[T(\boldsymbol{v})]$$
$$= (a_m T \circ T^m + \dots + a_1 T \circ T + a_0 T \circ I)(\boldsymbol{v})$$
$$= T[g(T)\boldsymbol{v}] = T(\mathbf{0}) = \mathbf{0}$$

4. For $\boldsymbol{v} \in \ker(T - \lambda I)$, $U = \operatorname{span}\{\boldsymbol{v}\}$ is *T*-invariant.

Proposition 7.11 Suppose that $T: V \to V$ is a linear transformation and $W \le V$ is *T*-invariant, then we construct the subspace mapping and the recipe mapping

$$T \mid_{W}: W \to W$$
with $\boldsymbol{w} \mapsto T(\boldsymbol{w})$

$$\tilde{T}: V/W \to V/W$$
(7.2a)
(7.2b)

with
$$\boldsymbol{v} + W \mapsto T(\boldsymbol{v}) + W$$

 $T \mid_{W} : W \to W$
(7.2b)

which leads to the decomposition of the charactersitic polynomial:

$$\mathcal{X}_T(x) = \mathcal{X}_{T|_W}(x)\mathcal{X}_{\tilde{T}}(x).$$

Proof. Suppose $C = \{v_1, ..., v_k\}$ is a basis of *W*, and extend it into the basis of *V*, denoted as

$$\mathcal{B} = \{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k, \boldsymbol{v}_{k+1}, \ldots, \boldsymbol{v}_n\}$$

Therefore, $\overline{\mathcal{B}} = \{ \boldsymbol{v}_{k+1} + W, \dots, \boldsymbol{v}_n + W \}$ is a basis of *V*/*W*. By Homework 2, Question 5, the representation $(T)_{\mathcal{B},\mathcal{B}}$ can be written as the block matrix

$$(T)_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} (T|_W)_{\mathcal{C},\mathcal{C}} & \times \\ \mathbf{0} & (\tilde{T})_{\overline{\mathcal{B}},\overline{\mathcal{B}}} \end{pmatrix}_{(k+(n-k))\times(k+(n-k))}$$

Therefore, the characteristic polynomial of *T* can be calculated as:

$$\mathcal{X}_{T}(x) = \det((T)_{\mathcal{B},\mathcal{B}} - xI)$$
$$= \det((T|_{U})_{\mathcal{C},\mathcal{C}} - xI) \cdot \det((\tilde{T})_{\overline{\mathcal{B}},\overline{\mathcal{B}}} - xI)$$

Proposition 7.12 Suppose that

$$\mathcal{X}_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$$

where λ_i 's are not necessarily distinct. Then there exists a basis of *V*, say A, such that

$$(T)_{\mathcal{A},\mathcal{A}} = \begin{pmatrix} \lambda_1 & \times & \times & \times \\ 0 & \lambda_2 & \cdots & \times \\ 0 & \cdots & \ddots & \times \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Proof. The proof is by induction on *n*, i.e., suppose the results hold for size = n - 1, and we aim to show this result holds for size = n.

1. **Step 1**: Argue that there exists the associated eigenvector \boldsymbol{v} of λ_1 under the linear operator *T*.

Consider any basis \mathcal{M} , by MAT2040, there exists associated eigenvector of λ_1 , say $\boldsymbol{y} \in \mathbb{C}^n$ such that

$$(T)_{\mathcal{M},\mathcal{M}} \cdot \boldsymbol{y} = \lambda_1 \boldsymbol{y}$$

Since the operator $(\cdot)_{\mathcal{M}} : V \to \mathbb{C}^n$ is an isomorphism, there exists $\boldsymbol{v} \in V \setminus \{\mathbf{0}\}$ such that $(\boldsymbol{v})_{\mathcal{M}} = \boldsymbol{y}$. It follows that

$$(T)_{\mathcal{M},\mathcal{M}}(\boldsymbol{v})_{\mathcal{M}} = \lambda_1(\boldsymbol{v})_{\mathcal{M}} \implies (T\boldsymbol{v})_{\mathcal{M}} = (\lambda_1\boldsymbol{v})_{\mathcal{M}} \implies T\boldsymbol{v} = \lambda_1\boldsymbol{v}$$

2. **Step 2**: Dimensionality reduction of $\mathcal{X}_T(x)$: Construct $W = \text{span}\{v\}$, which is *T*-invariant. By the proof of proposition (7.12), we imply there is a basis of *V*,say

 $B := \{\boldsymbol{v}, \boldsymbol{h}_2, \dots, \boldsymbol{h}_n\}$, such that

$$(T)_{\mathcal{B},\mathcal{B}} = \begin{pmatrix} (T|_W)_{\{\boldsymbol{v}\}} & \times \\ \mathbf{0} & (\tilde{T})_{\overline{\mathcal{B}},\overline{\mathcal{B}}} \end{pmatrix} = \begin{pmatrix} \lambda_1 & \times \\ \mathbf{0} & (\tilde{T})_{\overline{\mathcal{B}},\overline{\mathcal{B}}} \end{pmatrix}$$

where $\tilde{T}: V/W \rightarrow V/W$ admits the characteristic polynomial

$$\mathcal{X}_{\tilde{T}}(x) = (x - \lambda_2) \cdots (x - \lambda_n)$$

3. **Step 3:** Applying the induction, there exists basis \overline{C} of V/W, i.e.,

$$\overline{\mathcal{C}} = \{ \boldsymbol{w}_2 + W, \dots, \boldsymbol{w}_n + W \}$$

such that

•

$$(\tilde{T})_{\vec{C},\vec{C}} = \begin{pmatrix} \lambda_2 & \times & \times & \times \\ 0 & \lambda_3 & \cdots & \times \\ 0 & \cdots & \ddots & \times \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

- 4. **Step 4:** Therefore, we construct the set $\mathcal{A} := \{\boldsymbol{v}, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}$. We claim that
 - \mathcal{A} is a basis of V

$$(T)_{\mathcal{A},\mathcal{A}} = \begin{pmatrix} \lambda_1 & \times \\ \mathbf{0} & (\tilde{T})_{\overline{\mathcal{C}},\overline{\mathcal{C}}} \end{pmatrix} = \begin{pmatrix} \lambda_1 & \times & \times & \times \\ 0 & \lambda_2 & \cdots & \times \\ 0 & \cdots & \ddots & \times \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

Proposition 7.13 Suppose that $\mathcal{X}_T(x) = (x - \lambda_1) \cdots (x - \lambda_n)$, then $\mathcal{X}_T(T) = \mathbf{0}$.

R One special case is that $\mathbf{A} = \text{diag}(\lambda_1, \dots, \lambda_n)$. The results for proposition (7.13) gives

$$(A - \lambda_1 I) \cdots (A - \lambda_n I)$$
 is a zero matrix