
Chapter 7

Week7

7.1. Monday for MAT3040
Reviewing. Define the characteristic polynomial for an linear operator T:

XT(x) = det((T)A,A � xIII)

We will use the notation “I/III” in two different occasions:

1. I denotes the identity transformation from V to V with I(vvv) = vvv,8vvv 2 V

2. III denotes the identity matrix (I)A,A, defined based on any basis A.

7.1.1. Minimal Polynomial

Definition 7.1 [Linear Operator Induced From Polynomial] Let f (x) := amxm + · · ·+ a0

be a polynomial in F[x], and T : V ! V be a linear operator. Then the mapping

f (T) = amTm + · · ·+ a1T + a0 I : V ! V,

is called a linear operator induced from the polynomial f (x). ⌅

Definition 7.2 [Minimal Polynomial] Let T : V ! V be a linear operator. The minimal

polynomial mT(x) is a nonzero monic polynomial of least (minimal) degree such that

mT(T) = 000V!V .
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where 000V!V denotes the zero vector in Hom(V,V). ⌅

⌅ Example 7.1 1. Let AAA =

0

B@
1 0

0 1

1

CA, then AAA defines a linear operator:

A : F
2 ! F

2

with xxx 7! AAAxxx

Here XA(x) = (x � 1)2 and AAA � III = 000, which gives mA(x) = x � 1.

2. Let BBB =

0

B@
1 1

0 1

1

CA, which implies

XB(x) = (x � 1)2,

The question is that can we get the minimal polynomial with degree 1?

The answer is no, since BBB � kIII =

0

B@
1 � k 1

0 1 � k

1

CA 6= 000.

In fact, mB(x) = (x � 1)2, since

(BBB � III)2 =

0

B@
0 1

0 0

1

CA

2

=

0

B@
0 0

0 0

1

CA .

⌅

Two questions naturally arises:

1. Does mT(x) exist? If exists, is it unique?

2. What’s the relationship between mT(x) and XT(x)?

Regarding to the first question, the minimal polynomial mT(x) may not exist, if V has

infinite dimension:
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⌅ Example 7.2 Consider V = R[x] and the mapping

T : V ! V

p(x) 7!
R x

0 p(t)dt

In particular, T(xn) = 1
n+1 xn+1. Suppose mT(x) is with degree n, i.e.,

mT(x) = xn + · · ·+ a1x + a0,

then

mT(T) = Tn + · · ·+ a0 I is a zero linear transformation

It follows that

[mT(T)](x) =
1
n!

xn + an�1
1

(n � 1)!
xn�1 + · · ·+ a1x + a0 = 0F,

which is a contradiction since the coefficients of xk is nonzero on LHS for k = 1, . . . ,n,

but zero on the RHS. ⌅

Proposition 7.1 The minimal polynomial mT(x) always exists for dim(V) = n < •.

Proof. It’s clear that {I, T, . . . , Tn, Tn+1, · · · , Tn2}✓Hom(V,V). Since dim(Hom(V,V)) =

n2, we imply {I, T, . . . , Tn, Tn+1, · · · , Tn2} is linearly dependent, i.e., there exists ai’s that

are not all zero such that

a0 I + a1T + · · ·+ an2 Tn2
= 0

i.e., there is a polynomial g(x) of degree less than n2 such that g(T) = 0.

The proof is complete. ⌅

Proposition 7.2 The minimal polynomial mT(x), if exists, then it exists uniquely.

Proof. Suppose f1, f2 are two distinct minimal polynomials with deg( f1) = deg( f2). It

follows that
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• deg( f1 � f2) < deg( f1).

• f1 � f2 6= 0

• ( f1 � f2)(T) = f1(T)� f2(T) = 0V!V

By scaling f1 � f2, there is a monic polynomial g with lower degree satisfying g(T) = 0,

which contradicts the definition for minimal polynomial. ⌅

Proposition 7.3 Suppose f (x) 2 F[x] satisfying f (T) = 000, then

mT(x) | f (x).

Proof. It’s clear that deg( f ) � deg(mT). The division algorithm gives

f (x) = q(x)mT(x) + r(x).

Therefore, for any vvv 2 V

[r(T)](vvv) = [ f (T)](vvv)� [q(T)mT(T)](vvv) = 000V � q(T)000V = 000V � 000V = 000V

Therefore, r(T) = 000V!V . By definition of minimal polynomial, we imply r(x) ⌘ 0. ⌅

Proposition 7.4 If AAA, BBB 2 F
n⇥n are similar to each other, then mA(x) = mB(x).

Proof. Suppose that BBB = PPP�1AAAPPP, and that

mA(x) = xk + · · ·+ a1x + a0, mB(x) = x` + · · ·+ b0.

It follows that

mA(BBB) = BBBk + · · ·+ a0 I

= PPP�1AAAkPPP + · · ·+ a0PPP�1PPP

= PPP�1(AAAk + · · ·+ a0 III)PPP

= PPP�1(mA(AAA))PPP
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Therefore, mA(BBB) = 000 since mA(AAA) = 000. By proposition (7.3), we imply mB(x) | mA(x).

Similarly, mA(x) | mB(x). Since mA(x) and mB(x) are monic, we imply mA(x) = mB(x).

⌅

R Proposition (7.4) claims that the minimal polynomial is similarity-invariant;

actually, the characteristic polynomial is similarity-invariant as well.

Assumption. We will asssume V has finite dimension from now on. Now we study

the vanishing of a single vector vvv 2 V.

Notation. The mT(x) is a nonzero monic poylnomial of least degree such that

mT(T) = 000V!V .

7.1.2. Minimal Polynomial of a vector

Definition 7.3 [Minimal Polynomial of a vector] Similar to the minimal polynomial, we

define the minimal polynomial of a vector vvv relative to T, say mT,vvv(x), as the monic

polynomial of least degree such that

mT,vvv(T)(vvv) = 0

⌅

The existence of minimal polynomial of a vector is due to the existence of minimal

polynomial; the uniqueness follows similarly as in proposition (7.2).

Proposition 7.5 Let T : V ! V be a linear operator and vvv 2 V. The degree of the

minimal polynomial of a vector is upper bounded by:

deg(mT,vvv(x))  dim(V).

Proof. It’s clear that {vvv, Tvvv, . . . , Tnvvv} ✓ V and the proof follows similarly as in proposi-

tion (7.1). ⌅
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Similar to the division property in proposition (7.3), we have the division proprty

for minimal polynomial of a vector:

Proposition 7.6 Suppose f (x) 2 F[x] satisfying f (T)(vvv) = 000V , then

mT,vvv(x) | f (x).

In particular, mT,vvv | mT(x).

Proof. The proof follows similarly as in proposition (7.3). ⌅

Proposition 7.7 Suppose that mT,vvv(x) = f1(x) f2(x), where f1, f2 are both monic. Let

www = f1(T)vvv, then

mT,www(x) = f2(x)

Proof. 1.

f2(T)www = f2(T) f1(T)vvv = mT,vvv(T)vvv = 000

By the proposition (7.3), we imply mT,www| f2.

2. On the other hand,

000 = mT,www(T)(www) = mT,www(T) f1(T)vvv = f1(T)mT,www(T)vvv,

which implies that mT,vvv(x) | f1(x)mT,www(x),, i.e.,

f1 · f2 | f1 · mT,www =) f2 | mT,www.

The proof is complete.

⌅
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