6.2. Wednesday for MAT 3040
Reviewing: Root Theorem: p(A) =0 iff (x — A) divdes p(x).
I Corollary 6.1 A polynomial with degree n has at most n roots counting multiplicity.

For example, the polynomial (x — 3)? has one root x = 3 with multiplicity 2. When

counting multiplicity, we say the polynomial (x — 3)? has two roots.

Definition 6.2 [Algebraically Closed] A field FF is called algebraically closed if every

non-constant polynomial p(x) € F[x] has a root A € FF. .
Theorem 6.3 — Fundamental Theroem of Algebra. The set of complex numbers C is
algebraically closed.

Proof. One way is by complex analysis; Another way is by the topology on C \ {0}. H

r) By induction, we can show that every polynomial with degree n on alge-
braically closed field IF has exactly n roots, counting multiplicity. Therefore,

for any p(x) on algebraically closed field F,
p(x)=c(x — A1) (x — Ap) (6.2)
forc,Aq,..., A, € F.

The polynomials on general field F may not necessarily be factorized as in (6.2) , but

still admit unique factorization property:

Theorem 6.4 — Unique Factorization. Every f(x) =a,x" + --- 4+ ap in F[x] can be

factorized as

f(x) = anlpr ()] - - [pr(x)]*

where p;’s are monic, irreducible,distinct. Furthermore, this expression is unique

up to the permutation of factors.

180



Definition 6.3 [Factor] If p(x) = g(x)s(x) with p,q,s € F[x], then we say
e p(x) is divisible by s(x);

e s(x) is a factor of p(x);

s(x)|p(x)
e s(x) divides p(x)

e p(x) is multiple of s(x)

Definition 6.4 [Common Factor]

1. The polynomial g(x) is said to be a common factor of fi,..., fy € F[x] if

g|fi,i: 1,...,k

2. The polynomial g(x) is said to be a greatest common divisor of fy,..., fi if
e ¢ is monic.
e g is common factor of fi,..., fx

e g is of largest possible (maximal) degree.

ged(fi,--- fi) = ged(ged(fi, f2), fo,-- fi) = ged(ged(fi f2, f3), - fi)

ged(f1,..., fx) is unique.

If ged(f1,..., fx) =1, we say fi,..., fx is relatively prime

Polynomials fi,..., fr are relatively prime does not necessarily mean
ged(fi, f;) =1 for any i # j.
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Counter-example: Let a4, ...,4a, distinct irreducible polynomials, and

fi(x) = gl(x)-..ﬁi(x) ..-gn(x) Y TIRY Py

then ged(fy,..., fu) =1, but ged(f;, fj) = a1---d;---d;- - -a,, which does

not necessarily equal to 1.

m Example 6.3 The gcd(f1, f2) is easy to compute for factorized polynomials. For example,

let f1(x) = (x®2+x+1)3(x —3)%x* and fo(x) = (x2 +1)(x — 3)*x? in R[x], then

ged(fi, f2) = (x — 3)%%?

The question is how to find ged(f1, f2) for given un-factorized polynomials?

Theorem 6.5 — Rezout. Let g = gcd(fi, f2), then there exists 1,72 € F[x] such that

8(x) = ri(x) fu(x) + ra(x) fa(x)

More generally, ¢ = gcd(fi, ..., fx) implies there exists r1,...,7, such that

g:r1f1+---+rkfk

The derivation of r;’s is by applying Euclidean algorithm. For example, given x> +

6x + 7 and x% + 3x + 2, we imply
X34 6x+7— (x—3)(x*+3x+2) =13x + 13

and

2
x2+3x+2—%(13x+13)20

Therefore, gcd (x> + 6x + 7,x% + 3x + 2) = ged (x? + 3x +2,13x + 13) = x + 2.
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6.2.1. Eigenvalues & Eigenvectors

Definition 6.5 [Eigenvalues] Let T: V — V be a linear operator.

1. Wesay v € V'\ {0} is an eigenvector of T with eigenvalue A if T(v) = Av;
2. Orequivalently, » € ker(T — AI), the A-eigenspace of T. Here the mapping [: V — V

denotes identity map, i.e., [(v) =v,Vo € V.

Definition 6.6 A vector v € V' \ {0} is a generalized eigenvector of T with generalized

eigenvalue A if v € ker((T — AI)) for some k € N*. -

Note that an eigenvector is a generalized eigenvector of T; while the converse does not

necessarily hold.
» Example 6.4 Consider the linear transformation A : R> — IR? with
A: R?2—R?

with x — Ax

1 1
where A =

0 1

1. Note that [1,0]T is an eigenvector with eigenvalue 1, since
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Note that

(e}
o
(e}
(e}

and therefore

0
€ ker(A —1)?,
1

i.e., a generalized eigenvector with generalized eigenvalue 1.

m Example 6.5 Consider V =C®(IR), which is a set of all infinitely differentiable functions.
Define the linear operator T: V — V as T(f) = f”. Then the (—1)-eigenspace of T
has f € V satisfying

f” — _f
From ODE course, we imply {sinx,cosx} forms a basis of (—1)-eigenspace. .

Assumption. From now on, we assume V has finite dimension by default.

Definition 6.7 [Determinant] Let T: V — V be a linear operator. The determinant of
T is given by
det(T) = det((T).4,4)

where A is some basis of V. "

R) Assume we have complete knowledge about det(M) for matrices for now.
The determinant is well-defined, i.e., independent of the choice of basis A.

For another basis B, we imply

det(Tp5) = det(Cp aT4,4Ca) = det(Cp,4) det(T 4 4)det(Ca ) = det(Ta,4)
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Definition 6.8 [characteristic polynomial] The characteristic polynomial X1 (x) of
T:V — V is defined as
Ar(x) = det((T). 4.4 — x1)

for any basis A n
In the next few lectures, we will study
¢ Cayley-Hamilton Theorem
e Jordan Canonical Form

These theorems can be stated using matrices, and they both hold up to change of

basis. We have a unified statement of these theorem using vecotor space rather than

R".
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