
6.2. Wednesday for MAT3040
Reviewing: Root Theorem: p(l) = 0 iff (x � l) divdes p(x).

Corollary 6.1 A polynomial with degree n has at most n roots counting multiplicity.

For example, the polynomial (x � 3)2 has one root x = 3 with multiplicity 2. When

counting multiplicity, we say the polynomial (x � 3)2 has two roots.

Definition 6.2 [Algebraically Closed] A field F is called algebraically closed if every

non-constant polynomial p(x) 2 F[x] has a root l 2 F. ⌅

Theorem 6.3 — Fundamental Theroem of Algebra. The set of complex numbers C is

algebraically closed.

Proof. One way is by complex analysis; Another way is by the topology on C \ {0}. ⌅

R By induction, we can show that every polynomial with degree n on alge-

braically closed field F has exactly n roots, counting multiplicity. Therefore,

for any p(x) on algebraically closed field F,

p(x) = c(x � l1) · · · (x � ln) (6.2)

for c,l1, . . . ,ln 2 F.

The polynomials on general field F may not necessarily be factorized as in (6.2) , but

still admit unique factorization property:

Theorem 6.4 — Unique Factorization. Every f (x) = anxn + · · ·+ a0 in F[x] can be

factorized as

f (x) = an[p1(x)]e1 · · · [pk(x)]ek

where pi’s are monic, irreducible,distinct. Furthermore, this expression is unique

up to the permutation of factors.
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Definition 6.3 [Factor] If p(x) = q(x)s(x) with p,q, s 2 F[x], then we say

• p(x) is divisible by s(x);

• s(x) is a factor of p(x);

• s(x)|p(x)

• s(x) divides p(x)

• p(x) is multiple of s(x)

⌅

Definition 6.4 [Common Factor]

1. The polynomial g(x) is said to be a common factor of f1, . . . , fk 2 F[x] if

g| fi, i = 1, . . . ,k

2. The polynomial g(x) is said to be a greatest common divisor of f1, . . . , fk if

• g is monic.

• g is common factor of f1, . . . , fk

• g is of largest possible (maximal) degree.

⌅

R

• gcd( f1, . . . , fk) = gcd(gcd( f1, f2), f3, . . . , fk) = gcd(gcd( f1, f2, f3), . . . , fk)

• gcd( f1, . . . , fk) is unique.

• If gcd( f1, . . . , fk) = 1, we say f1, . . . , fk is relatively prime

• Polynomials f1, . . . , fk are relatively prime does not necessarily mean

gcd( fi, f j) = 1 for any i 6= j.
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Counter-example: Let a1, . . . , an distinct irreducible polynomials, and

fi(x) = a1(x) · · · âi(x) · · · an(x) := a1 · · · ai�1ai+1 · · · an,

then gcd( f1, . . . , fn) = 1, but gcd( fi, f j) = a1 · · · âi · · · âj · · · an, which does

not necessarily equal to 1.

⌅ Example 6.3 The gcd( f1, f2) is easy to compute for factorized polynomials. For example,

let f1(x) = (x2 + x + 1)3(x � 3)2x4 and f2(x) = (x2 + 1)(x � 3)4x2 in R[x], then

gcd( f1, f2) = (x � 3)2x2

⌅

The question is how to find gcd( f1, f2) for given un-factorized polynomials?

Theorem 6.5 — Rezout. Let g = gcd( f1, f2), then there exists r1,r2 2 F[x] such that

g(x) = r1(x) f1(x) + r2(x) f2(x)

More generally, g = gcd( f1, . . . , fk) implies there exists r1, . . . ,rk such that

g = r1 f1 + · · ·+ rk fk

The derivation of ri’s is by applying Euclidean algorithm. For example, given x3 +

6x + 7 and x2 + 3x + 2, we imply

x3 + 6x + 7 � (x � 3)(x2 + 3x + 2) = 13x + 13

and

x2 + 3x + 2 � x + 2
13

(13x + 13) = 0

Therefore, gcd(x3 + 6x + 7, x2 + 3x + 2) = gcd(x2 + 3x + 2,13x + 13) = x + 2.
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6.2.1. Eigenvalues & Eigenvectors

Definition 6.5 [Eigenvalues] Let T : V ! V be a linear operator.

1. We say vvv 2 V \ {000} is an eigenvector of T with eigenvalue l if T(vvv) = lvvv;

2. Or equivalently, vvv2 ker(T�lI), the l-eigenspace of T. Here the mapping I : V !V

denotes identity map, i.e., I(vvv) = vvv,8vvv 2 V.

⌅

Definition 6.6 A vector vvv 2V \ {000} is a generalized eigenvector of T with generalized

eigenvalue l if vvv 2 ker((T � lI)k) for some k 2 N
+. ⌅

Note that an eigenvector is a generalized eigenvector of T; while the converse does not

necessarily hold.

⌅ Example 6.4 Consider the linear transformation A : R
2 ! R

2 with

A : R
2 ! R

2

with xxx ! AAAxxx

where AAA =

0

B@
1 1

0 1

1

CA

1. Note that [1,0]T is an eigenvector with eigenvalue 1, since

A

0

B@
1

0

1

CA =

0

B@
1

0

1

CA

2. However, [0,1]T is not an eigenvector, since

A

0

B@
0

1

1

CA =

0

B@
1

0

1

CA .
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Note that

(A � I)2 =

0

B@
0 1

0 0

1

CA , (A � I)3 =

0

B@
0 0

0 0

1

CA

and therefore 0

B@
0

1

1

CA 2 ker(A � I)2,

i.e., a generalized eigenvector with generalized eigenvalue 1.

⌅

⌅ Example 6.5 Consider V = C•(R), which is a set of all infinitely differentiable functions.

Define the linear operator T : V ! V as T( f ) = f 00. Then the (�1)-eigenspace of T

has f 2 V satisfying

f 00 = � f

From ODE course, we imply {sin x, cos x} forms a basis of (�1)-eigenspace. ⌅

Assumption. From now on, we assume V has finite dimension by default.

Definition 6.7 [Determinant] Let T : V ! V be a linear operator. The determinant of

T is given by

det(T) = det((T)A,A)

where A is some basis of V. ⌅

R Assume we have complete knowledge about det(M) for matrices for now.

The determinant is well-defined, i.e., independent of the choice of basis A.

For another basis B, we imply

det(TB,B) = det(CB,ATA,ACA,B) = det(CB,A)det(TA,A)det(CA,B) = det(TA,A)
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Definition 6.8 [characteristic polynomial] The characteristic polynomial XT(x) of

T : V ! V is defined as

XT(x) = det((T)A,A � xI)

for any basis A ⌅

In the next few lectures, we will study

• Cayley-Hamilton Theorem

• Jordan Canonical Form

These theorems can be stated using matrices, and they both hold up to change of

basis. We have a unified statement of these theorem using vecotor space rather than

R
n.
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