6.2. Wednesday for MAT3040

Reviewing: Root Theorem: $p(\lambda) = 0$ iff $(x - \lambda)$ divdes p(x).

Corollary 6.1 A polynomial with degree *n* has at most *n* roots counting multiplicity.

For example, the polynomial $(x - 3)^2$ has one root x = 3 with multiplicity 2. When counting multiplicity, we say the polynomial $(x - 3)^2$ has two roots.

Definition 6.2 [Algebraically Closed] A field \mathbb{F} is called **algebraically closed** if every non-constant polynomial $p(x) \in \mathbb{F}[x]$ has a root $\lambda \in \mathbb{F}$.

Theorem 6.3 — Fundamental Theroem of Algebra. The set of complex numbers \mathbb{C} is algebraically closed.

Proof. One way is by complex analysis; Another way is by the topology on $\mathbb{C} \setminus \{0\}$.

R By induction, we can show that every polynomial with degree *n* on algebraically closed field \mathbb{F} has **exactly** *n* roots, counting multiplicity. Therefore, for any p(x) on algebraically closed field \mathbb{F} ,

$$p(x) = c(x - \lambda_1) \cdots (x - \lambda_n) \tag{6.2}$$

for $c, \lambda_1, \ldots, \lambda_n \in \mathbb{F}$.

The polynomials on general field \mathbb{F} may not necessarily be factorized as in (6.2), but still admit unique factorization property:

Theorem 6.4 — Unique Factorization. Every $f(x) = a_n x^n + \cdots + a_0$ in $\mathbb{F}[x]$ can be factorized as

$$f(x) = a_n [p_1(x)]^{e_1} \cdots [p_k(x)]^{e_k}$$

where p_i 's are **monic**, **irreducible**,**distinct**. Furthermore, this expression is unique up to the permutation of factors.

Definition 6.3 [Factor] If p(x) = q(x)s(x) with $p,q,s \in \mathbb{F}[x]$, then we say

- p(x) is divisible by s(x);
 s(x) is a factor of p(x);
 s(x)|p(x)
 s(x) divides p(x)
 p(x) is multiple of s(x)

Definition 6.4 [Common Factor]

1. The polynomial g(x) is said to be a common factor of $f_1,\ldots,f_k\in \mathbb{F}[x]$ if

$$g|f_i, i=1,\ldots,k$$

2. The polynomial g(x) is said to be a greatest common divisor of f_1, \ldots, f_k if

- g is monic.
 g is common factor of f₁,..., f_k
 - g is of largest possible (maximal) degree.

(\mathbf{R})

- $gcd(f_1,...,f_k) = gcd(gcd(f_1,f_2),f_3,...,f_k) = gcd(gcd(f_1,f_2,f_3),...,f_k)$
- $gcd(f_1, \ldots, f_k)$ is unique.
- If $gcd(f_1, \ldots, f_k) = 1$, we say f_1, \ldots, f_k is relatively prime
- Polynomials f_1, \ldots, f_k are relatively prime does not necessarily mean $gcd(f_i, f_j) = 1$ for any $i \neq j$.

Counter-example: Let a_1, \ldots, a_n distinct irreducible polynomials, and

$$f_i(x) = a_1(x) \cdots \hat{a}_i(x) \cdots a_n(x) := a_1 \cdots a_{i-1} a_{i+1} \cdots a_n,$$

then $gcd(f_1,...,f_n) = 1$, but $gcd(f_i,f_j) = a_1 \cdots \hat{a}_i \cdots \hat{a}_j \cdots a_n$, which does not necessarily equal to 1.

• Example 6.3 The $gcd(f_1, f_2)$ is easy to compute for factorized polynomials. For example, let $f_1(x) = (x^2 + x + 1)^3 (x - 3)^2 x^4$ and $f_2(x) = (x^2 + 1)(x - 3)^4 x^2$ in $\mathbb{R}[x]$, then

$$gcd(f_1, f_2) = (x - 3)^2 x^2$$

The question is how to find $gcd(f_1, f_2)$ for given un-factorized polynomials?

Theorem 6.5 — **Rezout.** Let $g = \text{gcd}(f_1, f_2)$, then there exists $r_1, r_2 \in \mathbb{F}[x]$ such that $g(x) = r_1(x)f_1(x) + r_2(x)f_2(x)$

More generally, $g = \text{gcd}(f_1, \dots, f_k)$ implies there exists r_1, \dots, r_k such that

$$g=r_1f_1+\cdots+r_kf_k$$

The derivation of r_i 's is by applying **Euclidean algorithm**. For example, given $x^3 + 6x + 7$ and $x^2 + 3x + 2$, we imply

$$x^{3} + 6x + 7 - (x - 3)(x^{2} + 3x + 2) = 13x + 13$$

and

$$x^2 + 3x + 2 - \frac{x+2}{13}(13x+13) = 0$$

Therefore, $gcd(x^3 + 6x + 7, x^2 + 3x + 2) = gcd(x^2 + 3x + 2, 13x + 13) = x + 2$.

6.2.1. Eigenvalues & Eigenvectors

Definition 6.5 [Eigenvalues] Let $T: V \to V$ be a linear operator.

- 1. We say $\boldsymbol{v} \in V \setminus \{\boldsymbol{0}\}$ is an eigenvector of T with eigenvalue λ if $T(\boldsymbol{v}) = \lambda \boldsymbol{v}$;
- 2. Or equivalently, $\boldsymbol{v} \in \ker(T \lambda I)$, the λ -eigenspace of T. Here the mapping $I: V \to V$ denotes identity map, i.e., $I(\boldsymbol{v}) = \boldsymbol{v}, \forall \boldsymbol{v} \in V$.

Definition 6.6 A vector $\boldsymbol{v} \in V \setminus \{\mathbf{0}\}$ is a generalized eigenvector of T with generalized eigenvalue λ if $\boldsymbol{v} \in \ker((T - \lambda I)^k)$ for some $k \in \mathbb{N}^+$.

Note that an eigenvector is a generalized eigenvector of *T*; while the converse does not necessarily hold.

Example 6.4 Consider the linear transformation $A: \mathbb{R}^2 \to \mathbb{R}^2$ with

$$A: \mathbb{R}^2 o \mathbb{R}^2$$

with $\mathbf{x} o \mathbf{A}\mathbf{x}$
where $\mathbf{A} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

1. Note that $[1,0]^T$ is an eigenvector with eigenvalue 1, since

$$A\begin{pmatrix}1\\0\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}$$

2. However, $[0,1]^T$ is not an eigenvector, since

$$A\begin{pmatrix}0\\1\end{pmatrix} = \begin{pmatrix}1\\0\end{pmatrix}.$$

Note that

$$(A-I)^2 = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad (A-I)^3 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

and therefore

$$\begin{pmatrix} 0\\1 \end{pmatrix} \in \ker(A-I)^2,$$

i.e., a generalized eigenvector with generalized eigenvalue 1.

• Example 6.5 Consider $V = C^{\infty}(\mathbb{R})$, which is a set of all infinitely differentiable functions. Define the linear operator $T: V \to V$ as T(f) = f''. Then the (-1)-eigenspace of T has $f \in V$ satisfying

$$f'' = -f$$

From ODE course, we imply $\{\sin x, \cos x\}$ forms a basis of (-1)-eigenspace.

Assumption. From now on, we assume *V* has finite dimension by default.

Definition 6.7 [Determinant] Let $T: V \to V$ be a linear operator. The **determinant** of T is given by

$$\det(T) = \det((T)_{\mathcal{A},\mathcal{A}})$$

where \mathcal{A} is some basis of V.

R Assume we have complete knowledge about det(*M*) for matrices for now. The determinant is well-defined, i.e., independent of the choice of basis *A*. For another basis *B*, we imply

$$\det(T_{\mathcal{B},\mathcal{B}}) = \det(C_{\mathcal{B},\mathcal{A}}T_{\mathcal{A},\mathcal{A}}C_{\mathcal{A},\mathcal{B}}) = \det(C_{\mathcal{B},\mathcal{A}})\det(T_{\mathcal{A},\mathcal{A}})\det(C_{\mathcal{A},\mathcal{B}}) = \det(T_{\mathcal{A},\mathcal{A}})$$

Definition 6.8 [characteristic polynomial] The characteristic polynomial $\mathcal{X}_T(x)$ of $T: V \to V$ is defined as $\mathcal{X}_T(x) = \det((T)_{\mathcal{A},\mathcal{A}} - xI)$ for any basis \mathcal{A}

$$\mathcal{X}_T(x) = \det((T)_{\mathcal{A},\mathcal{A}} - xI)$$

In the next few lectures, we will study

- Cayley-Hamilton Theorem
- Jordan Canonical Form

These theorems can be stated using matrices, and they both hold up to change of basis. We have a unified statement of these theorem using vecotor space rather than \mathbb{R}^{n} .