Chapter 6

Week6

6.1. Monday for MAT3040

6.1.1. Polynomials

We recall some useful properties of polynomial before studying eigenvalues/eigenvectors.

Definition 6.1 [Polynomial]

1. A polynomial over ${\mathbb F}$ has the form

$$p(z) = a_m z^m + \dots + a_1 z + a_0, \quad (a_m \neq 0).$$

Here $a_m z^m$ is called the **leading term** of p(z); *m* is called the degree; a_m is called the **leading coefficient**; a_m, \dots, a_0 are called the coefficients of this polynomial.

- 2. A polynomial over ${\mathbb F}$ is monic if its leading coefficient is $1_{{\mathbb F}}.$
- 3. A polynomial $p(z) \in \mathbb{F}[z]$ is irreducible if for any $a(z), b(z) \in \mathbb{F}[z]$,

 $p(z) = a(z)b(z) \implies$ either a(z) or b(z) is a constant polynomial.

Otherwise p(z) is reducible.

• Example 6.1 For example, the polynomial $p(x) = x^2 + 1$ is irreducible over \mathbb{R} ; but p(x) = (x - i)(x + i) is reducible over \mathbb{C} .

Theorem 6.1 — **Division Theorem.** For all $p,q \in \mathbb{F}[z]$ such that $p \neq 0$, there exists unique $s,r \in \mathbb{F}[x]$ satisfying deg(r) < deg(f), such that

$$p(z) = s(z) \cdot q(z) + r(z).$$

Here r(z) is called the **remainder**.

Example 6.2 Given $p(x) = x^4 + 1$ and $q(x) = x^2 + 1$, the junior school knowledge tells us that uniquely

$$x^{4} + 1 = (x^{2} - 1)(x^{2} + 1) + 2$$

Theorem 6.2 — **Root Theorem.** For $p(x) \in \mathbb{F}[x]$, and $\lambda \in \mathbb{F}$, $x - \lambda$ divides p if and only if $p(\lambda) = 0$.

- *Proof.* 1. If $(x \lambda)$ divides p, then $p = (x \lambda)q$ for some $q \in \mathbb{F}[x]$. Thus clearly $p(\lambda) = 0$.
 - 2. For the other direction, suppose that $p(\lambda) = 0$. By division theorem, there exists $s, r \in \mathbb{F}[x]$ such that

$$p = (x - \lambda)s + r$$
 with $\deg(r) < \deg(x - \lambda) = 1.$ (6.1)

Therefore, the polynomial r must be constant.

Substituting λ into x both sides in (6.1), we have

$$0 = p(\lambda) = 0 \cdot s + r \implies r = 0.$$

Therefore, $p = (x - \lambda) \cdot s$, i.e., $(x - \lambda)$ divides p.