
Chapter 5

Week5

5.1. Monday for MAT3040
Reviewing.

• Dual space: the set of linear transformations from V to F, denoted as Hom(V,F).

• Suppose B = {vvvi | i 2 I} is the basis of V, define B⇤ = { fi | i 2 I} by

fi(vvvj) = dij =

8
><

>:

1, i = j

0, i 6= j

Actually, the above recipe uniquely defines a linear transformation fi : V ! F:

For any vvv 2 V, it can be written as vvv = Âi2I aivvvi, and therefore

fi(vvv) = fi(Â
i2I

aivvvi) = Â
i2I

ai fi(vvvi).

⌅ Example 5.1 Consider V = R
n
, B = {eee1, . . . , eeen}. Then we imply B⇤ = {fi}n

i=1
,

where fi is the mapping V ! R defined by

fi

0

BBBB@

x1

.

.

.

xn

1

CCCCA
= f(x1eee1 + · · ·+ xneeen) =

n

Â
j=1

xjfi(eeej) = xi

⌅
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5.1.1. Remarks on Dual Space

Proposition 5.1 1. B⇤
is always lienarly independent, i.e., any finite subset of B⇤

is

linearly independent.

2. If V has finite dimension, then B⇤
is a basis of V⇤

.

Proof. 1. Suppose that

a1 fi1 + a2 fi2 + · · ·+ ak fik = 000V⇤ .

In particular, let the input of these linear transformations be vvvi1 , we imply

a1 fi1(vvvi1) + a2 fi2(vvvi1) + · · ·+ ak fik(vvvi1) = 000(vvvi1) ⌘ 000

= a1 · 1 + · · ·+ 0

= a1

Applying the same trick, one can show that a2 = · · ·= ak = 0. Therefore, { fi1 , . . . , fik}

is linearly independent.

2. Suppose that B = {vvv1, . . . ,vvvn} and B⇤ = { f1, . . . , fn}. For any f 2 V⇤
, construct the

linear transformation

g :=
n

Â
i=1

f (vvvi) · fi 2 span{B⇤}.

It follows that for j = 1,2, . . . ,n,

g(vvvj) =
n

Â
i=1

f (vvvi) · fi(vvvj) = f (vvvj).

It’s clear that g(vvv) = f (vvv) for all vvv 2 V, i.e., f ⌘ g 2 span(B⇤). Therefore B⇤
spans

V⇤
, i.e., forms a basis of V⇤

.

⌅

Corollary 5.1 If dim(V) = n, then dim(V⇤) = n.
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Proof. It’s eay to show the mapping defined as

V ! V⇤

with vvvi 7! fi

is an isomorphism from V ! V⇤
. Note that this constructed isomorphism depends on

the choice of basis B in V. (We say this is not a natural isomorphism.) ⌅

R The part 2 for proposition (5.1) does not hold for V with infinite dimension.

The reason is that the spanning set is defined with finite linear combinations.

Check the example below for a counter-example.

⌅ Example 5.2 Suppose that V = F[x], and B⇤ = {1, x, x2
, . . . ,} forms a basis of V. We

imply that B⇤ = {f0,f1,f2, . . . ,}, where fi is the mapping defined as

fi(xj) =

8
><

>:

1, i = j

0, otherwise

Consider a special element f 2 V⇤ with f (p(x)) = p(1):

f(1) = 1, f(x) = 1, f(x2) = 1, · · · f(xn) = 1, 8n 2 N.

If following the proof in proposition (5.1), we expect that

g :=
•

Â
n=0

f(xn)fn =
•

Â
n=0

fn 2 span{B⇤},

which is a contradiction, since span{B⇤} consists of finite sum of fi’s only. ⌅

R Therefore, if V is not finite-dimensional, we can say the cardinality of V is

strictly less than the cardinality of V⇤
.

Any subspace of a given vector space has some gap. Now we want to describe this

gap formally from the perspective of the dual space.
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5.1.2. Annihilators

Definition 5.1 Let V be a vector space, S ✓ V be a subset. The annihilator of S is

defined as

Ann(S) = { f 2 V⇤ | f (s) = 0,8s 2 S}

⌅

⌅ Example 5.3 Consider V = R
4, B = {eee1, . . . , eee4}. Let B⇤ = { f1, . . . , f4}, S = {eee3, eee4}.

• Then f1 2 Ann(S), since

f1(eee3) = 0, f1(eee4) = 0

Indeed, any a · f1 + b · f2 2 V⇤ is in Ann(S). ⌅

Proposition 5.2 1. The set Ann(S) is a vector subspace of V⇤

2. The mapping Ann(·) is inclusion-reversing, i.e., if W1 ✓ W2 ✓ V, then

Ann(W1) ◆ Ann(W2)

3. The mapping Ann(·) is idempotent, i.e., Ann(S) = Ann(span(S)).

4. If V has finite dimension, and W  V, then Ann(W) fills in the gap, i.e.,

dim(W) + dim(Ann(W)) = dim(V)

Proof. 1. Suppose that f , g 2 Ann(S), i.e., f (s) = g(s) = 0,8s 2 S. It’s clear that

(a f + bg) 2 Ann(S).

2. Suppose that f 2 Ann(W2), we imply f (www) = 0 for any www 2 W2. Therefore,

f (www1) = 0 for any www1 2 W1 ✓ W2, i.e., f 2 Ann(W1).

3. Note that S ✓ span(S). Therefore we imply Ann(S) ◆ Ann(span(S)) from part

(b). It suffices to show Ann(S) ✓ Ann(span(S)):
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For any f 2 Ann(S) and any Ân
i=1

kisssi 2 span(S), we imply

f

 
n

Â
i=1

kisssi

!
=

n

Â
i=1

ki f (sssi)

=
n

Â
i=1

ki · 0

= 0,

i.e., f 2 Ann(span(S)).

4. Let {vvv1, . . . ,vvvk} be a basis of W. By basis extension, we construct a basis of V:

B = {vvv1, . . . ,vvvk,vvvk+1, . . . ,vvvn}.

Let B⇤ = { f1, . . . , fk, fk+1, . . . , fn} be a basis of V⇤
. We claim that { fk+1, . . . , fn} is a

basis of Ann(W):

• Firstly, f j’s are the elements in Ann(W) for j = k + 1, . . . ,n, since for any

www = Âk
i=1

ai(vvvi) 2 W, we have

fj(www) =
k

Â
i=1

ai f j(vvvi)

=
k

Â
i=1

ai · 0

= 0, j = k + 1,k + 2, . . . ,n

• Secondly, the set { fk+1, . . . , fn} is linearly independent, since the set B⇤ =

{ f1, . . . , fn} is linearly independent.

• Thirdly, { fk+1, . . . , fn} spans Ann(W): for any g 2 Ann(W) ✓ V⇤
, it can be
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expressed as g = Ân
i=1

bi fi. It follows that

g(vvv1) =
n

Â
i=1

bi fi(vvv1) = 0 =) b1 = 0

.

.

.

g(vvvk) =
n

Â
i=1

bi fi(vvvk) = 0 =) bk = 0

Substituting b1 = · · · = bk = 0 into g = Ân
i=1

bi fi, we imply

g = bk+1 fk+1 + · · ·+ bn fn 2 span{ fk+1, . . . , fn}.

Therefore, { fk+1, . . . , fn} forms a basis for Ann(W), i.e., dim(Ann(W)) = n � k.

⌅

R Let W  V, where V has finite dimension, recall that we have obtained two

relations below:

dim(Ann(W)) = dim(V)� dim(W)

dim((V/W)⇤) = dim(V/W) = dim(V)� dim(W)

Therefore, dim((V/W)⇤) = dim(Ann(W)), i.e.,

(V/W)⇤ ⇠= Ann(W).

The question is that can we construct an isomorphism explicitly? We claim

that the mapping defined below is an isomorphism:

Ann(W)! (V/W)⇤

with f 7! f̃ ,

where f̃ : V/W ! F is constructed from the universal property I, i.e., given
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the mapping f 2 Ann(W), since W  ker( f ), there exists f̃ : V/W ! F such

that the diagram below commutes:

i.e., f̃ (vvv + W) = f (vvv).
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