4.4. Wednesday for MAT3040

Reviewing.

¢ Quotient Space:

V/IW={v+W|veV}
The elements in V /W are cosets. Note that V /W does not mean a subset of V.

e Define the canonical projection mapping

w:V—=>V /W,
with v—9+ W,
then we imply 7ty is a surjective linear transformation with ker(7ryw) = W.

If dim (V) < oo, then by Rank-Nullity Theorem (2.3), we imply that
dim(V) = dim(W) + dim(V /W),

ie, dim(V/W)=dim(V) — dim(W).

e (Universal Property I) Every linear transformation T: V — W with V/ <ker(T)
can be descended to the composition of the canonical projection mapping 7y
and the mapping

T:V/V =W
with 2+ V' +— T(v).

In other words, the diagram (2.1) commutes:

T
v w
1\‘ /T
V\V'

Diagram (2.1)
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In other words, the mapping starting from either the black or red line gives the

same result, i.e, T(v) = Tomy(v) =T(v+ V') forany v € V.

o (First Isomorphism Theorem) Under the setting of Universal Property I (UPI),
if T is a surjective linear transformation with V' = ker(T), then the T is an

isomorphism.

» Example 4.2 Suppose that U,W < V with U N W = {0}, then define the mapping

p:UdW—-U
with ¢(u+w)=u

r) Exercise: if U, W <V but UNW # {0}, then the mapping

p:-U+W—=U
is not well-defined:

with ut+w—u

Suppose that 0 #v € UN W and for any u € U,w € W, we construct

W=u—-vecl w=wtvcV — ¢ +w)=u—-v

Therefore we get u + w = u’ + w' but p(u + w) # p(u’ + w').

Back to the situation U NW = {0}, then it's clear that ¢ : U & W — U is surjective

linear transformation with ker(¢) = W. Therefore, construct the new mapping

p:UdW/W—U
with u+w+W— ¢(u+w)

We imply ¢ is an isomorphism by First Isomorphism Theorem. .

Now we study the generalized quotients, which is defined to satisfy the generalized

version of universal property 1.
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Definition 4.7  [Universal Property for Quotients] Let V' be a vector space and V' < V.

Consider the collection of linear transformations

T is a linear transformation
Obj={T:V W
V' <ker(T)
(For example, 7ty : V- — V /V' is an element from the set Obj.)

An element (¢ : V — U) € Obj is said to satisfy the universal property if it satisfies

the following:

Given any element (T : V — W) € Obj, we can extend the transformation

¢ with a uniquely existing T: U — W so that the diagram (2.2) commutes:

T
|4

N

Diagram (2.2)

Or equivalently, for given (T : V — W) € Obj, there exists the unique

mapping T : U — W such that T =T o ¢.

Theorem 4.3 — Universal Property Il. 1. The mapping (7ry: : V — V/V’) € Obj
is a universal object, i.e., it satisfies the universal property.
2. If (¢: V — U) is a universal object, then U = V /V’, i.e., there is intrinsically

“one” element in the set of universal objects.

Proof. 1. Consider any linear transformation T : V — W such that V' < ker(T),
then define (construct) the same T:V/V’ — W as that in UPL Therefore, for
given T, applying the result of UPI, we imply T = T o 7ty i.e., 7ty satisfies the

130



diagram (2.2).
To show the uniqueness of T, suppose there exists S: V/V’ — W such that the

diagram (2.3) commutes.

T
4 w

N /-

ANA

Diagram (2.3)

It suffices to show the mapping S = T: for any v + V' € V/V’, we have

S(v+ V') :=Somy(v)=T(v),

where the first equality is due to the surjectivity of 7ry,. By the result of UPI,
T(v) = T(v + V'). Therefore T(v + V') =S(v+ V') forall v + V' € V/V'. The
proof is complete.

. Suppose that (¢ : V — U) satisfies the universal property. In particular, the

following two diagrams hold:

L] Ty,
|4 U Ve —m— v\ V
¢ / id N / Ty,
U U
Diagram (2.4) Diagram (2.5)

Since (7yr) satisfies the universal property, in particular, the following two

diagrams hold:
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¢ Ty,

14 U |4 V\V
TN $ ﬂy, / id
V\V VAV
Diagram (2.6) Diagram (2.7)

Then we claim that: Combining Diagram (2.5) and (2.6), we imply the dia-

gram (2-8):
Ty,
m_ " e .
4
¢ ‘_
Ty, . U
.. llll '
’.. llllllllllllll 2;5
v\V
Diagram (2.8)

Graph Description: Note that this diagram commutes, i.e., the mapping starting from
either the red line or the dash line gives the same result, i.e., 1y = Ty o po Ty, e,
ﬁ'Vf o (i) =1id

Therefore, 7ty o ¢ = id implies 7y is surjective and ¢ is injective.
Also, combining Diagram (2.6) an (2.5), we imply diagram (2.9):
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¢ ... nVI :: ¢
f V\V
o PSS 4
» e 7,
U
Diagram (2.9)

Graph Description: Note that this diagram commutes, i.e., the mapping starting from
either the red line or the dash line gives the same result, i.e., ¢ = o Ty 0 ¢, ie,
(f) o 77[V/ =id

Therefore, ¢ o 7ty = id implies ¢ is surjective and 7Ty is injective.
Therefore, both ¢ : U — V/V' and 7ty : V/V' — U are bijective, i.e, U=V /V'.

The proof is complete.

4.4.1. Dual Space

Definition 4.8 Let V be a vector space over a field IF. The dual vector space V* is

defined as

V* = Homg(V,FF)

={f:V —F| f is a linear transformation}
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s Example 4.3 1. Consider V =IR" and define ¢; : V — R as the i-th component of

input:
X1
ol | =xi,
Xn
X1
Then we imply ¢; € V*. On the contrary, 4)1-2 = xi2 is not in V*
Xn

2. Consider V =F[x] and define ¢ : V — F as:

¢(p(x)) = p(1),

It's clear that ¢ € V*:

¢(ap(x) +bq(x)) = ap(1) + bq(1)

= ag(p(x)) + bgp(q(x))

3. Also, : V=T by p(p(x)) = folp(x)dx is in V*.
4. Also, for V.= M, xn(F), the mapping tr: V. — F by tr(M) = YI" ; Mj; is in V*.

However, the det: V' — FF is not in V*
Definition 4.9 Let V be a vector space, with basis B={v; | i € I} (I can be finite or

countable, or uncountable). Define

B*={f:VoF|iell,
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where f;'s are defined on the basis B:

1, ifi=j

0, ifij

fi(vj) = dij =
Then we extend f;'s linearly, i.e., for Z]-Z\i1 ajv; € V,

N N
fi(Z;"‘jvj) = Z;,‘Xjfi(vj)-
= i=

It's clear that f; € V* is well-defined.

Our question is that whether the B* can be the basis of V*?
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