
4.4. Wednesday for MAT3040
Reviewing.

• Quotient Space:

V/W = {vvv + W | vvv 2 V}

The elements in V/W are cosets. Note that V/W does not mean a subset of V.

• Define the canonical projection mapping

pW : V ! V/W,

with vvv 7! vvv + W,

then we imply pW is a surjective linear transformation with ker(pW) = W.

If dim(V) < •, then by Rank-Nullity Theorem (2.3), we imply that

dim(V) = dim(W) + dim(V/W),

i.e., dim(V/W) = dim(V)� dim(W).

• (Universal Property I) Every linear transformation T : V ! W with V 0  ker(T)

can be descended to the composition of the canonical projection mapping pV0

and the mapping

T̃ : V/V 0 ! W

with vvv + V 0 7! T(vvv).

In other words, the diagram (2.1) commutes:
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In other words, the mapping starting from either the black or red line gives the

same result, i.e., T(vvv) = T̃ � pV0(vvv) = T̃(vvv + V 0) for any vvv 2 V.

• (First Isomorphism Theorem) Under the setting of Universal Property I (UPI),

if T is a surjective linear transformation with V 0 = ker(T), then the T̃ is an

isomorphism.

⌅ Example 4.2 Suppose that U,W  V with U \ W = {000}, then define the mapping

f : U � W ! U

with f(uuu + www) = uuu

R Exercise: if U,W  V but U \ W 6= {000}, then the mapping

f : U + W ! U

with uuu + www 7! uuu
is not well-defined:

Suppose that 000 6= vvv 2 U \ W and for any uuu 2 U,www 2 W, we construct

uuu0 = uuu � vvv 2 U, www0 = www + vvv 2 V =) f(uuu0 + www0) = uuu � vvv

Therefore we get uuu + www = uuu0 + www0 but f(uuu + www) 6= f(uuu0 + www0).

Back to the situation U \ W = {000}, then it’s clear that f : U � W ! U is surjective

linear transformation with ker(f) = W. Therefore, construct the new mapping

f̃ : U � W/W ! U

with uuu + www + W 7! f(uuu + www)

We imply f̃ is an isomorphism by First Isomorphism Theorem. ⌅

Now we study the generalized quotients, which is defined to satisfy the generalized

version of universal property I.
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Definition 4.7 [Universal Property for Quotients] Let V be a vector space and V 0  V.

Consider the collection of linear transformations

Obj =

8
><

>:
T : V ! W

�������

T is a linear transformation

V 0  ker(T)

9
>=

>;

(For example, pV0 : V ! V/V 0 is an element from the set Obj.)

An element (f : V ! U) 2 Obj is said to satisfy the universal property if it satisfies

the following:

Given any element (T : V ! W) 2 Obj, we can extend the transformation

f with a uniquely existing T̃ : U ! W so that the diagram (2.2) commutes:

Or equivalently, for given (T : V ! W) 2 Obj, there exists the unique

mapping T̃ : U ! W such that T = T̃ � f.

⌅

Theorem 4.3 — Universal Property II. 1. The mapping (pV0 : V ! V/V 0) 2 Obj

is a universal object, i.e., it satisfies the universal property.

2. If (f : V ! U) is a universal object, then U ⇠= V/V 0, i.e., there is intrinsically

“one” element in the set of universal objects.

Proof. 1. Consider any linear transformation T : V ! W such that V 0  ker(T),

then define (construct) the same T̃ : V/V 0 ! W as that in UPI. Therefore, for

given T, applying the result of UPI, we imply T = T̃ � pV0 , i.e., pV0 satisfies the
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diagram (2.2).

To show the uniqueness of T̃, suppose there exists S̃ : V/V 0 ! W such that the

diagram (2.3) commutes.

It suffices to show the mapping S̃ = T̃: for any vvv + V 0 2 V/V 0, we have

S̃(vvv + V 0) := S̃ � pV0(vvv) = T(vvv),

where the first equality is due to the surjectivity of pV0 . By the result of UPI,

T(vvv) = T̃(vvv + V 0). Therefore T̃(vvv + V 0) = S̃(vvv + V 0) for all vvv + V 0 2 V/V 0. The

proof is complete.

2. Suppose that (f : V ! U) satisfies the universal property. In particular, the

following two diagrams hold:

Since (pV0) satisfies the universal property, in particular, the following two

diagrams hold:
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Then we claim that: Combining Diagram (2.5) and (2.6), we imply the dia-

gram (2.8):

Graph Description: Note that this diagram commutes, i.e., the mapping starting from
either the red line or the dash line gives the same result, i.e., pV0 = p̃V0 � f̃ � pV0 , i.e.,
p̃V0 � f̃ = id

Therefore, p̃V0 � f̃ = id implies p̃V0 is surjective and f̃ is injective.

Also, combining Diagram (2.6) an (2.5), we imply diagram (2.9):
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Graph Description: Note that this diagram commutes, i.e., the mapping starting from
either the red line or the dash line gives the same result, i.e., f = f̃ � p̃V0 � f, i.e.,
f̃ � p̃V0 = id

Therefore, f̃ � p̃V0 = id implies f̃ is surjective and p̃V0 is injective.

Therefore, both f̃ : U ! V/V 0 and p̃V0 : V/V 0 ! U are bijective, i.e., U ⇠= V/V 0.

The proof is complete.

⌅

4.4.1. Dual Space

Definition 4.8 Let V be a vector space over a field F. The dual vector space V⇤ is

defined as

V⇤ = HomF(V,F)

= { f : V ! F | f is a linear transformation}

⌅
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⌅ Example 4.3 1. Consider V = R
n and define fi : V ! R as the i-th component of

input:

fi

0

BBBB@

x1
...

xn

1

CCCCA
= xi,

Then we imply fi 2 V⇤. On the contrary, f2
i

0

BBBB@

x1
...

xn

1

CCCCA
= x2

i is not in V⇤

2. Consider V = F[x] and define f : V ! F as:

f(p(x)) = p(1),

It’s clear that f 2 V⇤:

f(ap(x) + bq(x)) = ap(1) + bq(1)

= af(p(x)) + bf(q(x))

3. Also, y : V ! F by y(p(x)) =
R 1

0 p(x)dx is in V⇤.

4. Also, for V = Mn⇥n(F), the mapping tr : V ! F by tr(M) = Ân
i=1 Mii is in V⇤.

However, the det : V ! F is not in V⇤

⌅

Definition 4.9 Let V be a vector space, with basis B = {vi | i 2 I} (I can be finite or

countable, or uncountable). Define

B⇤ = { fi : V ! F | i 2 I},
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where fi’s are defined on the basis B:

fi(vj) = dij =

8
><

>:

1, if i = j

0, if i 6= j

Then we extend fi’s linearly, i.e., for ÂN
j=1 ajvj 2 V,

fi(
N

Â
j=1

ajvj) =
N

Â
i=1

aj fi(vj).

It’s clear that fi 2 V⇤ is well-defined. ⌅

Our question is that whether the B⇤ can be the basis of V⇤?
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