Chapter 4

Week4

4.1. Monday for MAT3040

4.1.1. Quotient Spaces

Now we aim to divide a big vector space into many pieces of slices.

e For example, the Cartesian plane can be expressed as union of set of vertical lines

as follows:

R*= [ 7;1 +span{(0,1)}}

e Another example is that the set of integers can be expressed as union of three

sets:

Z=71UZyUZs,

where Z; is the set of integers z such that z mod 3 = .

Definition 4.1 [Coset| Let V be a vector space and W < V. For any element v € V, the

(right) coset determined by v is the set

v+W:={v+w|weW}

For example, consider V = IR and W = span{(1,2,0)}. Then the coset determined
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by v = (5,6, —3) can be written as
v+W={(5+t6+2t-3)|tcR}

It's interesting that the coset determined by v’ = {(4,4, —3)} is exactly the same as the

coset shown above:
vV +W={(4+t4+2t,-3)|[teR} =0+ W.

Therefore, write the exact expression of v + W may sometimes become tedious and
hard to check the equivalence. We say v is a representative of a coset v + W.
Proposition 4.1  Two cosets are the same iff the subtraction for the corresponding
representatives is in W, i.e,,

Nn+W=m+W<=v,—1veWwW

Proof. Necessity. Suppose that v; + W = v, + W, then v; + w; = v, + w, for some
w1, wy € W, which implies

V1—r=wr—w €W

Sufficiency. Suppose that v; — v, = w € W. It suffices to show v; + W C v, + W. For

any 91 +w' € v1 + W, this element can be expressed as

v+w=(m+tw +w =0+ w+w)co,+W.
——
belong to W

Therefore, v1 + W C v, + W. Similarly we can show that v, + W Cv; + W. [ |

Exercise: Two cosets with representatives v, v, have no intersection iff v; — v, € W.

Definition 4.2 [Quotient Space] The quotient space of V by the subspace W, is the

collection of all cosets v + W, denoted by V/W. "

To make the quotient space a vector space structure, we define the addition and scalar

112



multiplication on V /W by:

(01+W)+('02+W)2: (U1+02)+W

a-(0+W):=(a-0)+W

For example, consider V = IR? and W = span{(0,1) }. Then note that

2 3
0 0 0
1
T +W | = + W
0 0

Proposition 4.2 The addition and scalar multiplication is well-defined.

Proof. 1. Suppose that

01 —|—W:’D,1 +W
(4.1)

v+ W=0)+W

and we need to show that (v1 +vp) + W = (v} +v}) + W.

From (4.1) and proposition (4.1), we imply
v—vEW, 1,—v,EW
which implies
(01 —0)) + (02 —v5) = (v1 +02) — (V] +05) EW

By proposition (4.1) again we imply (1 +v,) + W = (0] +v5) + W
2. For scalar multiplication, similarly, we can show that v; + W = v + W implies

av, + W =av] + W for all « € F.
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Proposition 4.3  The canonical projection mapping

iV —=V/W,

v—v+ W,

is a surjective linear transformation with ker () = W.
Proof. 1. First we show that ker () = W:
w(0)=0 = v+W=0y,y = 0+ W=0+W = v=(v—-0)eW

Here note that the zero element in the quotient space V/W is the coset with
representative 0.

2. For any vo + W € V/W, we can construct vy € V such that mw(vy) = vo + W.
Therefore the mapping 7y is surjective.

3. To show the mapping 7y is a linear transformation, note that

iw (avy + Bo2) = (201 + Boo) + W
= (a1 + W) + (Bv2 + W)
=a(v1+ W)+ B(v2+ W)

= aﬂw(’l)l) + ,B7Tw(02)

4.1.2. First Isomorphism Theorem

The key of linear algebra is to solve the linear system Ax = b with A € R"*". The

general step for solving this linear system is as follows:

1. Find the solution set for Ax =0, i.e., the set ker(A)

2. Find a particular solution x( such that Axy = b.

Then the general solution set to this linear system is x + ker(A), which is a coset in
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the space R"/ ker(A). Therefore, to solve the linear system Ax = b suffices to study
the quotient space R" / ker(A):

Proposition 4.4 — Universal Property I. Suppose that T:V — W is a linear transfor-

mation, and that V' <ker(T). Then the mapping

T:V/V - W

v+ V' — T(v)

is a well-defined linear transformation. As a result, the diagram below commutes:

T
V W
VAV

In other words, we have T = T o mryy.

Proof. First we show the well-definedness. Suppose that v; + V' = v, + V' and suffices

to show T(v1 + V') = T(v, + V'), i.e., T(v1) = T(v2). By proposition (4.1), we imply

v1—v eV <ker(T) = T(v;—v2)=0 = T(v;) — T(v2) =0.

Then we show (T) is a linear transformation:

T(Dé(‘01 + V,) + ,B(Uz + V/)) = T((Dél?l + ﬁvz) + V,)
= T(avq + Bv2)
=aT(v1) + BT (v2)

= DCT(Ul -+ V/) —+ IBT(’UQ + V/)
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Actually, if we let V' = ker(T), the mapping T : V/V’ — T(V) forms an isomor-
phism, In particular, if further T is surjective, then T(V) = W, i.e., the mapping

T:V/V' — W forms an isomorphism.

Theorem 4.1 — First Isomorphism Theorem. Let T :V — W be a surjective linear

transformation. Then the mapping

T:V/ker(T) - W

v+ ker(T) — T(v)

is an isomorphism.

Proof. Injectivity. Suppose that T (v + ker(T)) = T(v, + ker(T)), then we imply

T(v1) =T(v2) = T(v1 —v2) = 0w = v1 — vz € ker(T),

i.e., v1 + ker(T) = v, + ker(T).
Surjectivity. For w € W, due to the surjectivity of T, we can find a vy such that

T(v9) = w. Therefore, we can construct a set vy + ker(T) such that

T(vo + ker(T)) = w.
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