
Chapter 4

Week4

4.1. Monday for MAT3040

4.1.1. Quotient Spaces

Now we aim to divide a big vector space into many pieces of slices.

• For example, the Cartesian plane can be expressed as union of set of vertical lines

as follows:
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• Another example is that the set of integers can be expressed as union of three

sets:

Z = Z1 [ Z2 [ Z3,

where Zi is the set of integers z such that z mod 3 = i.

Definition 4.1 [Coset] Let V be a vector space and W  V. For any element vvv 2 V, the

(right) coset determined by vvv is the set

vvv + W := {vvv + www | www 2 W}

⌅

For example, consider V = R
3

and W = span{(1,2,0)}. Then the coset determined
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by vvv = (5,6,�3) can be written as

vvv + W = {(5 + t,6 + 2t,�3) | t 2 R}

It’s interesting that the coset determined by vvv0 = {(4,4,�3)} is exactly the same as the

coset shown above:

vvv0 + W = {(4 + t,4 + 2t,�3) | t 2 R} = vvv + W.

Therefore, write the exact expression of vvv + W may sometimes become tedious and

hard to check the equivalence. We say vvv is a representative of a coset vvv + W.

Proposition 4.1 Two cosets are the same iff the subtraction for the corresponding

representatives is in W, i.e.,

vvv1 + W = vvv2 + W () vvv1 � vvv2 2 W

Proof. Necessity. Suppose that vvv1 + W = vvv2 + W, then vvv1 + www1 = vvv2 + www2 for some

www1,www2 2 W, which implies

vvv1 � vvv2 = www2 � www1 2 W

Sufficiency. Suppose that vvv1 � vvv2 = www 2 W. It suffices to show vvv1 + W ✓ vvv2 + W. For

any vvv1 + www0 2 vvv1 + W, this element can be expressed as

vvv1 + www0 = (vvv2 + www) + www0 = vvv2 + (www + www0)| {z }
belong to W

2 vvv2 + W.

Therefore, vvv1 + W ✓ vvv2 + W. Similarly we can show that vvv2 + W ✓ vvv1 + W. ⌅

Exercise: Two cosets with representatives vvv1,vvv2 have no intersection iff vvv1 � vvv2 /2 W.

Definition 4.2 [Quotient Space] The quotient space of V by the subspace W, is the

collection of all cosets vvv + W, denoted by V/W. ⌅

To make the quotient space a vector space structure, we define the addition and scalar
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multiplication on V/W by:

(vvv1 + W) + (vvv2 + W) := (vvv1 + vvv2) + W

a · (vvv + W) := (a · vvv) + W

For example, consider V = R
2

and W = span{(0,1)}. Then note that
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Proposition 4.2 The addition and scalar multiplication is well-defined.

Proof. 1. Suppose that 8
><

>:

vvv1 + W = vvv0
1
+ W

vvv2 + W = vvv02 + W
, (4.1)

and we need to show that (vvv1 + vvv2) + W = (vvv0
1
+ vvv0

2
) + W.

From (4.1) and proposition (4.1), we imply

vvv1 � vvv0
1
2 W, vvv2 � vvv02 2 W

which implies

(vvv1 � vvv0
1
) + (vvv2 � vvv02) = (vvv1 + vvv2)� (vvv0

1
+ vvv02) 2 W

By proposition (4.1) again we imply (vvv1 + vvv2) + W = (vvv0
1
+ vvv0

2
) + W

2. For scalar multiplication, similarly, we can show that vvv1 + W = vvv0
1
+ W implies

avvv1 + W = avvv0
1
+ W for all a 2 F.

⌅
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Proposition 4.3 The canonical projection mapping

pW :V ! V/W,

vvv 7! vvv + W,

is a surjective linear transformation with ker(pW) = W.

Proof. 1. First we show that ker(pW) = W:

pW(vvv) = 0 =) vvv + W = 000V/W =) vvv + W = 000 + W =) vvv = (vvv � 000) 2 W

Here note that the zero element in the quotient space V/W is the coset with

representative 000.

2. For any vvv0 + W 2 V/W, we can construct vvv0 2 V such that pW(vvv0) = vvv0 + W.

Therefore the mapping pW is surjective.

3. To show the mapping pW is a linear transformation, note that

pW(avvv1 + bvvv2) = (avvv1 + bvvv2) + W

= (avvv1 + W) + (bvvv2 + W)

= a(vvv1 + W) + b(vvv2 + W)

= apW(vvv1) + bpW(vvv2)

⌅

4.1.2. First Isomorphism Theorem

The key of linear algebra is to solve the linear system AAAxxx = bbb with AAA 2 R
m⇥n

. The

general step for solving this linear system is as follows:

1. Find the solution set for AAAxxx = 000, i.e., the set ker(AAA)

2. Find a particular solution xxx0 such that AAAxxx0 = bbb.

Then the general solution set to this linear system is xxx0 + ker(AAA), which is a coset in
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the space R
n
/ker(AAA). Therefore, to solve the linear system AAAxxx = bbb suffices to study

the quotient space R
n
/ker(AAA):

Proposition 4.4 — Universal Property I. Suppose that T : V ! W is a linear transfor-

mation, and that V 0  ker(T). Then the mapping

T̃ : V/V 0 ! W

vvv + V 0 7! T(vvv)

is a well-defined linear transformation. As a result, the diagram below commutes:

In other words, we have T = T̃ � pW .

Proof. First we show the well-definedness. Suppose that vvv1 + V 0 = vvv2 + V 0
and suffices

to show T̃(vvv1 + V 0) = T̃(vvv2 + V 0), i.e., T(vvv1) = T(vvv2). By proposition (4.1), we imply

vvv1 � vvv2 2 V 0  ker(T) =) T(vvv1 � vvv2) = 000 =) T(vvv1)� T(vvv2) = 000.

Then we show (̃T) is a linear transformation:

T̃(a(vvv1 + V 0) + b(vvv2 + V 0)) = T̃((avvv1 + bvvv2) + V 0)

= T(avvv1 + bvvv2)

= aT(vvv1) + bT(vvv2)

= aT̃(vvv1 + V 0) + bT̃(vvv2 + V 0)
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⌅

Actually, if we let V 0 = ker(T), the mapping T̃ : V/V 0 ! T(V) forms an isomor-

phism, In particular, if further T is surjective, then T(V) = W, i.e., the mapping

T̃ : V/V 0 ! W forms an isomorphism.

Theorem 4.1 — First Isomorphism Theorem. Let T : V ! W be a surjective linear

transformation. Then the mapping

T̃ : V/ker(T)! W

vvv + ker(T) 7! T(vvv)

is an isomorphism.

Proof. Injectivity. Suppose that T̃(vvv1 + ker(T)) = T̃(vvv2 + ker(T)), then we imply

T(vvv1) = T(vvv2) =) T(vvv1 � vvv2) = 000W =) vvv1 � vvv2 2 ker(T),

i.e., vvv1 + ker(T) = vvv2 + ker(T).

Surjectivity. For www 2 W, due to the surjectivity of T, we can find a vvv0 such that

T(vvv0) = www. Therefore, we can construct a set vvv0 + ker(T) such that

T̃(vvv0 + ker(T)) = www.

⌅
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