3.4. Wednesday for MAT3040

3.4.1. Remarks for the Change of Basis

Reviewing.

- $[\cdot]_{\mathcal{A}}: V \to \mathbb{F}^n$ denotes coordinate vector mapping
- Change of Basis matrix: $C_{\mathcal{A}',\mathcal{A}}$
- $T: V \to W, A = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_n\}$ and $\boldsymbol{B} = \{\boldsymbol{w}_1, \dots, \boldsymbol{w}_m\}$.

 $\operatorname{Hom}_{\mathbb{F}}(V,W) \to M_{m \times n}(\mathbb{F})$

- Example 3.10 Let $V = \mathbb{P}_3[x]$ and $\mathcal{A} = \{1, x, x^2, x^3\}$.
 - Let $T: V \to V$ defined as $p(x) \mapsto p'(x)$:

$$T(1) = 0 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3}$$
$$T(x) = 1 \cdot 1 + 0 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3}$$
$$T(x^{2}) = 0 \cdot 1 + 2 \cdot x + 0 \cdot x^{2} + 0 \cdot x^{3}$$
$$T(x^{3}) = 0 \cdot 1 + 0 \cdot x + 3 \cdot x^{2} + 0 \cdot x^{3}$$

We can define the change of basis matrix for a linear transformation T as well, w.r.t. \mathcal{A} and \mathcal{A} :

$\mathcal{C}_{\mathcal{A},\mathcal{A}} =$	0	1	0	0
	0	0	2	0
	0	0	0	3
	0	0	0	0)

Also, we can define a different basis $\mathcal{A}' = \{x^3, x^2, x, 1\}$ for the output space for T, say $T: V_{\mathcal{A}} \to V_{\mathcal{A}'}$:

$(T)_{\mathcal{A},\mathcal{A}'} =$	0	0	0	0
	0	0	0	3
	0	0	2	0
	0	1	0	0)

Our observation is that the corresponding coordinate vectors before and after linear transformation admits a matrix multiplication:

$$(2x^{2} + 4x^{3}) \xrightarrow{T} ((4x + 12x^{2}))$$

$$(2x^{2} + 4x^{3})_{\mathcal{A}} = \begin{pmatrix} 0 \\ 0 \\ 2 \\ 4 \end{pmatrix} \qquad (4x + 12x^{2})_{\mathcal{A}} = \begin{pmatrix} 0 \\ 4 \\ 12 \\ 0 \end{pmatrix}$$

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 2 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 4 \\ 12 \\ 0 \end{pmatrix}$$

$$\mathcal{C}_{\mathcal{A}\mathcal{A}} \cdot (2x^{2} + 4x^{3})_{\mathcal{A}} = (4x + 12x^{2})_{\mathcal{A}}$$

Theorem 3.3 — **Matrix Representation**. Let $T : V \to W$ be a linear transformation of finite dimensional vector sapces. Let \mathcal{A}, \mathcal{B} the ordered basis of V, W, respectively. Then the following diagram holds:

Figure 3.2: Diagram for the matrix reprentation, where $n := \dim(V)$ and $m := \dim(W)$

namely, for any $\boldsymbol{v} \in V$,

$$(T)_{\mathcal{B},\mathcal{A}}(\boldsymbol{v})_{\mathcal{A}} = (T\boldsymbol{v})_{\mathcal{B}}$$

Therefore, we can compute $T\boldsymbol{v}$ by matrix multiplication.

R Linear transformation corresponds to coordinate matrix multiplication.

Proof. Suppose $A = \{v_1, ..., v_n\}$ and $B = \{w_1, ..., w_n\}$. The proof of this theorem follows the same procedure of that in Theorem (3.1)

1. We show this result for $\boldsymbol{v} = \boldsymbol{v}_j$ first:

LHS =
$$[\alpha_{ij}]\boldsymbol{e}_j = \begin{pmatrix} \alpha_{1j} \\ \vdots \\ \alpha_{nj} \end{pmatrix}$$

RHS = $(T\boldsymbol{v}_j)_{\mathcal{B}} = \begin{pmatrix} \sum_{i=1}^m \alpha_{ij}\boldsymbol{w}_i \end{pmatrix}_{\mathcal{B}} = \begin{pmatrix} \alpha_{1j} \\ \vdots \\ \alpha_{nj} \end{pmatrix}$

2. Then we show the theorem holds for any $\boldsymbol{v} := \sum_{j=1}^{n} r_j \boldsymbol{v}_j$ in *V*:

$$(T)_{\mathcal{B}\mathcal{A}}(\boldsymbol{v})_{\mathcal{A}} = (T)_{\mathcal{B}\mathcal{A}} \left(\sum_{j=1}^{n} r_j \boldsymbol{v}_j\right)_{\mathcal{A}}$$
(3.8a)

$$= (T)_{\mathcal{B}\mathcal{A}} \left(\sum_{j=1}^{n} r_j(\boldsymbol{v}_j)_{\mathcal{A}} \right)$$
(3.8b)

$$=\sum_{j=1}^{n}r_{j}(T)_{\mathcal{BA}}(\boldsymbol{v}_{j})_{\mathcal{A}}$$
(3.8c)

$$=\sum_{j=1}^{n}r_{j}(T\boldsymbol{v}_{j})_{\mathcal{B}}$$
(3.8d)

$$= \left(\sum_{j=1}^{n} r_j(T\boldsymbol{v}_j)\right)_{\mathcal{B}}$$
(3.8e)

$$= \left[T(\sum_{j=1}^{n} r_j \boldsymbol{v}_j) \right]_{\mathcal{B}}$$
(3.8f)

$$= (T\boldsymbol{v})_{\mathcal{B}} \tag{3.8g}$$

The justification for (3.8a) is similar to that shown in Theorem (3.1). The proof is complete.

R Consider a special case for Theorem (3.3), i.e., T = id and A, A' are two ordered basis for the input and output space, respectively. Then the result in Theorem (3.3) implies

$$\mathcal{C}_{\mathcal{A}',\mathcal{A}}(\boldsymbol{v})_{\mathcal{A}} = (\boldsymbol{v})_{\mathcal{A}'}$$

i.e., the matrix representation theorem (3.3) is a general case for the change of basis theorem (3.1)

Proposition 3.6 — **Functionality.** Suppose *V*, *W*, *U* are finite dimensional vector spaces, and let A, B, C be the ordered basis for *V*, *W*, *U*, respectively. Suppose that

$$T: V \rightarrow W, S: W \rightarrow U$$

are given two linear transformations, then

$$(S \circ T)_{\mathcal{C},\mathcal{A}} = (S)_{\mathcal{C},\mathcal{B}}(T)_{\mathcal{B},\mathcal{A}}$$

Composition of linear transformation corresponds to the multiplication of change of basis matrices.

Proof. Suppose the ordered basis $\mathcal{A} = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_n\}, \mathcal{B} = \{\boldsymbol{w}_1, \dots, \boldsymbol{w}_m\}, \mathcal{C} = \{\boldsymbol{u}_1, \dots, \boldsymbol{u}_p\}.$ By definiton of change of basis matrices,

$$T(\boldsymbol{v}_j) = \sum_i (T_{\mathcal{B},\mathcal{A}})_{ij} \boldsymbol{w}_i$$
$$S(\boldsymbol{w}_i) = \sum_k (S_{\mathcal{C},\mathcal{B}})_{ki} \boldsymbol{u}_k$$

We start from the *j*-th column of $(S \circ T)_{C,A}$ for j = 1, ..., n, namely

$$(S \circ T)_{\mathcal{C},\mathcal{A}}(\boldsymbol{v}_j)_{\mathcal{A}} = (S \circ T(\boldsymbol{v}_j))_{\mathcal{C}}$$
(3.9a)

$$= \left[S \circ \left(\sum_{i} (T_{\mathcal{B},\mathcal{A}})_{ij} \boldsymbol{w}_{i} \right) \right]_{\mathcal{C}}$$
(3.9b)

$$=\sum_{i} (T_{\mathcal{B},\mathcal{A}})_{ij} (S(\boldsymbol{w}_{i}))_{\mathcal{C}}$$
(3.9c)

$$=\sum_{i} (T_{\mathcal{B},\mathcal{A}})_{ij} \left(\sum_{k} (S_{\mathcal{C},\mathcal{B}})_{ki} \boldsymbol{u}_{k}\right)_{\mathcal{C}}$$
(3.9d)

$$=\sum_{k}\sum_{i}(S_{\mathcal{C},\mathcal{B}})_{ki}(T_{\mathcal{B},\mathcal{A}})_{ij}(\boldsymbol{u}_{k})_{\mathcal{C}}$$
(3.9e)

$$=\sum_{k} (S_{\mathcal{C},\mathcal{B}}T_{\mathcal{B},\mathcal{A}})_{kj}(\boldsymbol{u}_{k})_{\mathcal{C}}$$
(3.9f)

$$=\sum_{k} (S_{\mathcal{C},\mathcal{B}} T_{\mathcal{B},\mathcal{A}})_{kj} \boldsymbol{e}_{k}$$
(3.9g)

$$= j\text{-th column of } [S_{CB}T_{B,A}]$$
(3.9h)

where (3.9a) is by the result in theorem (3.3); (3.9b) and (3.9d) follows from definitions of $T(\boldsymbol{v}_j)$ and $S(\boldsymbol{w}_i)$; (3.9c) and (3.9e) follows from the linearity of C; (3.9f) follows from the matrix multiplication definition; (3.9g) is because $(\boldsymbol{u}_k)_{\mathcal{C}} = \boldsymbol{e}_k$.

Therefore, $(S \circ T)_{CA}$ and $(S_{C,B})(T_{B,A})$ share the same *j*-th column, and thus equal to each other.

Corollary 3.2 Suppose that S and T are two identity mappings $V \to V$, and consider $(S)_{\mathcal{A}'\mathcal{A}}$ and $(T)_{\mathcal{A},\mathcal{A}'}$ in proposition (3.6), then

$$(S \circ T)_{\mathcal{A}',\mathcal{A}'} = (S)_{\mathcal{A}'\mathcal{A}}(T)_{\mathcal{A},\mathcal{A}'}$$

Therefore,

Identity matrix =
$$C_{\mathcal{A}',\mathcal{A}}C_{\mathcal{A},\mathcal{A}'}$$

Proposition 3.7 Let $T: V \to W$ with dim(V) = n, dim(W) = m, and let

- $\mathcal{A}, \mathcal{A}'$ be ordered basis of V
- $\mathcal{B}, \mathcal{B}'$ be ordered basis of W

then the change of basis matrices admit the relation

$$(T)_{\mathcal{B}',\mathcal{A}'} = \mathcal{C}_{\mathcal{B}',\mathcal{B}}(T)_{\mathcal{B},\mathcal{A}}\mathcal{C}_{\mathcal{A}\mathcal{A}'}$$
(3.10)

Here note that $(T)_{\mathcal{B}',\mathcal{A}'}, (T)_{\mathcal{B},\mathcal{A}} \in \mathbb{F}^{m \times n}$; $\mathcal{C}_{\mathcal{B}',\mathcal{B}} \in \mathbb{F}^{m \times m}$; and $\mathcal{C}_{\mathcal{A}\mathcal{A}'} \in \mathbb{F}^{n \times n}$.

Proof. Let $\mathcal{A} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}, \mathcal{A}' = \{\mathbf{v}'_1, \dots, \mathbf{v}'_n\}$. Consider simplifying the *j*-th column for the LHS and RHS of (3.10) and showing they are equal:

LHS =
$$(T)_{\mathcal{B}',\mathcal{A}'} \boldsymbol{e}_j$$

= $(T)_{\mathcal{B}',\mathcal{A}'} (\boldsymbol{v}'_j)_{\mathcal{A}'}$
= $(T\boldsymbol{v}'_j)_{\mathcal{B}'}$

$$RHS = C_{\mathcal{B}',\mathcal{B}}(T)_{\mathcal{B},\mathcal{A}}C_{\mathcal{A}\mathcal{A}'}\boldsymbol{e}_{j}$$
$$= C_{\mathcal{B}',\mathcal{B}}(T)_{\mathcal{B},\mathcal{A}}C_{\mathcal{A}\mathcal{A}'}(\boldsymbol{v}'_{j})_{\mathcal{A}'}$$
$$= C_{\mathcal{B}',\mathcal{B}}(T)_{\mathcal{B},\mathcal{A}}(\boldsymbol{v}'_{j})_{\mathcal{A}}$$
$$= C_{\mathcal{B}',\mathcal{B}}(T\boldsymbol{v}'_{j})_{\mathcal{B}}$$
$$= (T\boldsymbol{v}'_{j})_{\mathcal{B}'}$$

R Let $T: V \to V$ be a linear operator with $\mathcal{A}, \mathcal{A}'$ being two ordered basis of V, then

$$(T)_{\mathcal{A}'\mathcal{A}'} = \mathcal{C}_{\mathcal{A}',\mathcal{A}}(T)_{\mathcal{A}\mathcal{A}}\mathcal{C}_{\mathcal{A},\mathcal{A}'} = (\mathcal{C}_{\mathcal{A},\mathcal{A}'})^{-1}(T)_{\mathcal{A}\mathcal{A}}\mathcal{C}_{\mathcal{A},\mathcal{A}'}$$

Therefore, the change of basis matrices $(T)_{A'A'}$ and $(T)_{AA}$ are similar to each other, which means they share the same eigenvalues, determinant, trace.

Therefore, two similar matrices cooresponds to same linear transformation using different basis.