
3.4. Wednesday for MAT3040

3.4.1. Remarks for the Change of Basis
Reviewing.

• [·]A : V ! F
n denotes coordinate vector mapping

• Change of Basis matrix: CA0,A

• T : V ! W, A = {vvv1, . . . ,vvvn} and BBB = {www1, . . . ,wwwm}.

HomF(V,W)! Mm⇥n(F)

⌅ Example 3.10 Let V = P3[x] and A = {1, x, x2, x3}.

Let T : V ! V defined as p(x) 7! p0(x):

8
>>>>>>>>><

>>>>>>>>>:

T(1) = 0 · 1 + 0 · x + 0 · x2 + 0 · x3

T(x) = 1 · 1 + 0 · x + 0 · x2 + 0 · x3

T(x2) = 0 · 1 + 2 · x + 0 · x2 + 0 · x3

T(x3) = 0 · 1 + 0 · x + 3 · x2 + 0 · x3

We can define the change of basis matrix for a linear transformation T as well, w.r.t.

A and A:

CA,A =

0

BBBBBBB@

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

1

CCCCCCCA

Also, we can define a different basis A0 = {x3, x2, x, 1} for the output space for T, say

T : VA ! VA0 :

(T)A,A0 =

0

BBBBBBB@

0 0 0 0

0 0 0 3

0 0 2 0

0 1 0 0

1

CCCCCCCA
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Our observation is that the corresponding coordinate vectors before and after linear

transformation admits a matrix multiplication:

(2x2 + 4x3)
T�! ((4x + 12x2))

(2x2 + 4x3)A =

0

BBBBBBB@

0

0

2

4

1

CCCCCCCA

(4x + 12x2)A =

0

BBBBBBB@

0

4

12

0

1

CCCCCCCA

0

BBBBBBB@

0 1 0 0

0 0 2 0

0 0 0 3

0 0 0 0

1

CCCCCCCA

0

BBBBBBB@

0

0

2

4

1

CCCCCCCA

=

0

BBBBBBB@

0

4

12

0

1

CCCCCCCA

CAA · (2x2 + 4x3)A = (4x + 12x2)A

⌅

Theorem 3.3 — Matrix Representation. Let T : V ! W be a linear transformation of

finite dimensional vector sapces. Let A,B the ordered basis of V,W, respectively.

Then the following diagram holds:

Figure 3.2: Diagram for the matrix reprentation, where n := dim(V) and m :=
dim(W)
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namely, for any vvv 2 V,

(T)B,A(vvv)A = (Tvvv)B

Therefore, we can compute Tvvv by matrix multiplication.

R Linear transformation corresponds to coordinate matrix multiplication.

Proof. Suppose A = {vvv1, . . . ,vvvn} and B = {www1, . . . ,wwwn}. The proof of this theorem fol-

lows the same procedure of that in Theorem (3.1)

1. We show this result for vvv = vvvj first:

LHS = [aij]eeej =

0

BBBB@

a1j
...

anj

1

CCCCA

RHS = (Tvvvj)B =

 
m

Â
i=1

aijwwwi

!

B
=

0

BBBB@

a1j
...

anj

1

CCCCA

2. Then we show the theorem holds for any vvv := Ân
j=1 rjvvvj in V:

(T)BA(vvv)A = (T)BA

 
n

Â
j=1

rjvvvj

!

A

(3.8a)

= (T)BA

 
n

Â
j=1

rj(vvvj)A

!
(3.8b)

=
n

Â
j=1

rj(T)BA(vvvj)A (3.8c)

=
n

Â
j=1

rj(Tvvvj)B (3.8d)

=

 
n

Â
j=1

rj(Tvvvj)

!

B

(3.8e)

=

"
T(

n

Â
j=1

rjvvvj)

#

B

(3.8f)

= (Tvvv)B (3.8g)
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The justification for (3.8a) is similar to that shown in Theorem (3.1). The proof is

complete.

⌅

R Consider a special case for Theorem (3.3), i.e., T = id and A,A0 are two

ordered basis for the input and output space, respectively. Then the result in

Theorem (3.3) implies

CA0,A(vvv)A = (vvv)A0

i.e., the matrix representation theorem (3.3) is a general case for the change

of basis theorem (3.1)

Proposition 3.6 — Functionality. Suppose V,W,U are finite dimensional vector spaces,

and let A,B,C be the ordered basis for V,W,U, respectively. Suppose that

T : V ! W, S : W ! U

are given two linear transformations, then

(S � T)C,A = (S)C,B(T)B,A

Composition of linear transformation corresponds to the multiplication of change

of basis matrices.

Proof. Suppose the ordered basis A = {vvv1, . . . ,vvvn}, B = {www1, . . . ,wwwm}, C = {uuu1, . . . ,uuup}.

By defintion of change of basis matrices,

T(vvvj) = Â
i
(TB,A)ijwwwi

S(wwwi) = Â
k
(SC,B)kiuuuk
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We start from the j-th column of (S � T)C,A for j = 1, . . . ,n, namely

(S � T)C,A(vvvj)A = (S � T(vvvj))C (3.9a)

=

"
S �
 

Â
i
(TB,A)ijwwwi

!#

C
(3.9b)

= Â
i
(TB,A)ij (S(wwwi))C (3.9c)

= Â
i
(TB,A)ij

 

Â
k
(SC,B)kiuuuk

!

C
(3.9d)

= Â
k

Â
i
(SC,B)ki(TB,A)ij(uuuk)C (3.9e)

= Â
k
(SC,BTB,A)kj(uuuk)C (3.9f)

= Â
k
(SC,BTB,A)kjeeek (3.9g)

= j-th column of [SCBTB,A] (3.9h)

where (3.9a) is by the result in theorem (3.3); (3.9b) and (3.9d) follows from definitions

of T(vvvj) and S(wwwi); (3.9c) and (3.9e) follows from the linearity of C; (3.9f) follows from

the matrix multiplication definition; (3.9g) is because (uuuk)C = eeek.

Therefore, (S � T)CA and (SC,B)(TB,A) share the same j-th column, and thus equal

to each other. ⌅

Corollary 3.2 Suppose that S and T are two identity mappings V ! V, and consider

(S)A0A and (T)A,A0 in proposition (3.6), then

(S � T)A0,A0 = (S)A0A(T)A,A0

Therefore,

Identity matrix = CA0,ACA,A0

Proposition 3.7 Let T : V ! W with dim(V) = n,dim(W) = m, and let

• A,A0 be ordered basis of V

• B,B0 be ordered basis of W
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then the change of basis matrices admit the relation

(T)B0,A0 = CB0,B(T)B,ACAA0 (3.10)

Here note that (T)B0,A0 , (T)B,A 2 F
m⇥n; CB0,B 2 F

m⇥m; and CAA0 2 F
n⇥n.

Proof. Let A = {vvv1, . . . ,vvvn},A0 = {vvv01, . . . ,vvv0n}. Consider simplifying the j-th column for

the LHS and RHS of (3.10) and showing they are equal:

LHS = (T)B0,A0eeej

= (T)B0,A0(vvv0j)A0

= (Tvvv0j)B0

RHS = CB0,B(T)B,ACAA0eeej

= CB0,B(T)B,ACAA0(vvv0j)A0

= CB0,B(T)B,A(vvv0j)A

= CB0,B(Tvvv0j)B

= (Tvvv0j)B0

⌅

R Let T : V ! V be a linear operator with A,A0 being two ordered basisof V,

then

(T)A0A0 = CA0,A(T)AACA,A0 = (CA,A0)�1(T)AACA,A0

Therefore, the change of basis matrices (T)A0A0 and (T)AA are similar to each

other, which means they share the same eigenvalues, determinant, trace.

Therefore, two similar matrices cooresponds to same linear transformation

using different basis.
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