
Chapter 3

Week3

3.1. Monday for MAT3040
Reviewing.

1. Complementation. Suppose dim(V) = n < •, then W  V implies that there

exists W 0 such that

W � W 0 = V.

2. Given the linear transformation T : V ! W, define the set ker(T) and Im(T).

3. Isomorphism of vector spaces: T : V ⇠= W

4. Rank-Nullity Theorem

3.1.1. Remarks on Isomorphism
Proposition 3.1 If T : V ! W is an isomorphism, then

1. the set {vvv1, . . . ,vvvk} is linearly independent in V if and only if {Tvvv1, . . . , Tvvvk} is

linearly independent.

2. The same goes if we replace the linearly independence by spans.

3. If dim(V) = n, then {vvv1, . . . ,vvvn} forms a basis of V if and only if {Tvvv1, . . . , Tvvvn}

forms a basis of W. In particular, dim(V) = dim(W).

4. Two vector spaces with finite dimensions are isomorphic if and only if they have

the same dimension:

Proof. It suffices to show the reverse direction. Let {vvv1, . . . ,vvvn} and {www1, . . . ,wwwn} be two
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basis of V,W, respectively. Define the linear transformation T : V ! W by

T(a1vvv1 + · · ·+ anvvvn) = a1www1 + · · ·+ anwwwn

Then T is surjective since {www1, . . . ,wwwn} spans W; T is injective since {www1, . . . ,wwwn} is

linearly independent. ⌅

3.1.2. Change of Basis and Matrix Representation

Definition 3.1 [Coordinate Vector] Let V be a finite dimensional vector space and

B = {vvv1, . . . ,vvvn} an ordered basis of V. Any vector vvv 2 V can be uniquely written as

vvv = a1vvv1 + · · ·+ anvvvn,

Therefore we define the map [·]B : V ! F
n, which maps any vector in vvv into its coordinate

vector:

[vvv]B =

0

BBBB@

a1
...

an

1

CCCCA

⌅

R Note that {vvv1,vvv2, . . . ,vvvn} and {vvv2,vvv1, . . . ,vvvn} are distinct ordered basis.

⌅ Example 3.1 Given V = M2⇥2(F) and the ordered basis

B =

8
><

>:

0

B@
1 0

0 0

1

CA ,

0

B@
0 1

0 0

1

CA ,

0

B@
0 0

1 0

1

CA ,

0

B@
0 0

0 1

1

CA ,

9
>=

>;

76



Any matrix has the coordinate vector w.r.t. B, i.e.,

2

64

0

B@
1 4

2 3

1

CA

3

75

B

=

0

BBBBBBB@

1

4

2

3

1

CCCCCCCA

However, if given another ordered basis

B1 =

8
><

>:

0

B@
0 1

0 0

1

CA ,

0

B@
1 0

0 0

1

CA ,

0

B@
0 0

1 0

1

CA ,

0

B@
0 0

0 1

1

CA ,

9
>=

>;
,

the matrix may have the different coordinate vector w.r.t. B1:

2

64

0

B@
1 4

2 3

1

CA

3

75

B1

=

0

BBBBBBB@

4

1

2

3

1

CCCCCCCA

⌅

Theorem 3.1 The mapping [·]B : V ! F
n is an isomorphism.

Proof. 1. First show the operator [·]B is well-defined, i.e., the same input gives the

same output. Suppose that

[vvv]B =

0

BBBB@

a1
...

an

1

CCCCA
[vvv]B =

0

BBBB@

a0
1
...

a0
n

1

CCCCA
,

then we imply

vvv = a1vvv1 + · · ·+ anvvvn

= a0
1vvv1 + · · ·+ a0

nvvvn.
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By the uniqueness of coordinates, we imply ai = a0
i for i = 1, . . . ,n.

2. It’s clear that the operator [·]B is a linear transformation, i.e.,

[pvvv + qwww]B = p[vvv]B + q[www]B 8p,q 2 F

3. The operator [·]B is surjective:

[vvv]B =

0

BBBB@

0
...

0

1

CCCCA
=) vvv = 0vvv1 + · · ·+ 0vvvn = 000.

4. The injective is clear, i.e., [vvv]B = [www]B implies vvv = www.

Therefore, [·]B is an isomorphism. ⌅

We can use the Theorem (3.1) to simplify computations in vector spaces:

⌅ Example 3.2 Given a vector sapce V = P3[x] and its basis B = {1, x, x2, x3}.

To check if the set {1 + x2,3 � x3, x � x3} is linearly independent, by part (1) in

Proposition (3.1) and Theorem (3.1), it suffices to check whether the corresponding

coordinate vectors 8
>>>>>>><

>>>>>>>:

0

BBBBBBB@

1

0

1

0

1

CCCCCCCA

,

0

BBBBBBB@

3

0

0

�1

1

CCCCCCCA

,

0

BBBBBBB@

0

1

0

�1

1

CCCCCCCA

9
>>>>>>>=

>>>>>>>;

is linearly independent, i.e., do Gaussian Elimination and check the number of pivots. ⌅

Here gives rise to the question: if B1,B2 form two basis of V, then how are [vvv]B1 , [vvv]B2

related to each other?

Here we consider an easy example first:
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⌅ Example 3.3 Consider V = R
n and its basis B1 = {eee1, . . . , eeen}. For any vvv 2 V,

vvv =

0

BBBB@

a1
...

an

1

CCCCA
= aneee1 + · · ·+ aneeen =) [vvv]B1 =

0

BBBB@

a1
...

an

1

CCCCA

Also, we can construct a different basis of V:

B2 =

8
>>>>>>><

>>>>>>>:

0

BBBBBBB@

1

0
...

0

1

CCCCCCCA

,

0

BBBBBBB@

1

1
...

0

1

CCCCCCCA

, . . . ,

0

BBBBBBB@

1

1
...

1

1

CCCCCCCA

9
>>>>>>>=

>>>>>>>;

,

which gives a different coordinate vector of vvv:

[vvv]B2 =

0

BBBBBBBBBBB@

a1 � a2

a2 � a3
...

an�1 � an

an

1

CCCCCCCCCCCA

⌅

Proposition 3.2 — Change of Basis. Let A= {vvv1, . . . ,vvvn} and A0 = {www1, . . . ,wwwn} be two

ordered basis of a vector space V. Define the change of basis matrix from A to A0, say

CA0,A := [aij], where

vvvj =
m

Â
i=1

aijwwwi

Then for any vector vvv 2 V, the change of basis amounts to left-multiplying the change of

basis matrix:

CA0,A[vvv]A = [vvv]A0 (3.1)
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Define matrix CA,A0 := [bij], where

wwwj =
n

Â
i=1

bijvvvi

Then we imply that

(CA,A0)�1 = CA0,A

Proof. 1. First show (3.1) holds for vvv = vvvj, j = 1, . . . ,n:

LHS of (3.1) = [aij]eeej =

0

BBBB@

a1j
...

anj

1

CCCCA

RHS of (3.1) = [vvvj]A0 =

"
n

Â
i=1

aiwwwi

#

A0

=

0

BBBB@

a1j
...

anj

1

CCCCA

Therefore,

CA0,A[vvvj]A = [vvvj]A0 , 8j = 1, . . . ,n. (3.2)

2. Then for any vvv 2 V, we imply vvv = r1vvv1 + · · ·+ rnvvvn, which implies that

CA0,A[vvv]A = CA0,A[r1vvv1 + · · ·+ rnvvvn]A (3.3a)

= CA0,A (r1[vvv1]A + · · ·+ rn[vvvn]A) (3.3b)

=
n

Â
j=1

rjCA0,A[vvvj]A (3.3c)

=
n

Â
j=1

rj[vvvj]A0 (3.3d)

=

"
n

Â
j=1

rjvvvj

#

A0

(3.3e)

= [vvv]A0 (3.3f)

where (3.3a) and (3.3e) is by applying the lineaity of [·]A and [·]A0 ; (3.3d) is by

applying the result (3.12). Therefore (3.1) is shown for 8vvv 2 V.
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3. Now we show that (CAA0CA0A) = IIIn. Note that

vvvj =
n

Â
i=1

aijwwwi

=
n

Â
i=1

aij

n

Â
k=1

bkivvvk

=
n

Â
k=1

 
n

Â
i=1

bkiaij

!
vvvi

By the uniqueness of coordinates, we imply

 
n

Â
i=1

bkiaij

!
= djk :=

8
><

>:

1, j = k

0, j 6= k

By the matrix multiplication, the (k, j)-th entry for CAA0CA0A is

[CAA0CA0A]kj =

 
n

Â
i=1

bkiaij

!
= djk =) (CAA0CA0A) = IIIn

Noew, suppose

vvvj =
n

Â
i=1

aijwwwi

=
n

Â
i=1

aij

n

Â
k=1

bkivvvk

=
n

Â
k=1

 
n

Â
i=1

bkiaij

!
vvvi

By the uniqueness of coordinates, we imply

 
n

Â
i=1

bkiaij

!
=

8
><

>:

1, j = k

0, j 6= k

where  
n

Â
i=1

bkiaij

!
= (CAA0CA0A) .

Therefore, (CAA0CA0A) = IIIn. ⌅
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⌅ Example 3.4 Back to Example (3.3), write B1,B2 as

B1 = {eee1, . . . , eeen}, B2 = {www1, . . . ,wwwn}

and therefore wwwi = eee1 + · · ·+ eeei. The change of basis matrix is given by

CB1,B2 =

0

BBBBBBB@

1 1 · · · 1

0 1 · · · 1
...

...
. . .

...

0 0 · · · 1

1

CCCCCCCA

which implies that for vvv in the example,

CB1,B2 [vvv]B2 =

0

BBBBBBB@

1 1 · · · 1

0 1 · · · 1
...

...
. . .

...

0 0 · · · 1

1

CCCCCCCA

0

BBBBBBB@

a1 � a2
...

an�1 � an

an

1

CCCCCCCA

=

0

BBBB@

a1
...

an

1

CCCCA
= [vvv]B1

⌅

Definition 3.2 Let T : V ! W be a linear transformation, and

A = {vvv1, . . . ,vvvm}, B = {www1, . . . ,wwwm}

be basis of V and W, respectively. The matrix representation of T with respect to

(w.r.t.) A and B is defined as (T)BA 2 Mm⇥m(F), where

T(vvvj) =
m

Â
i=1

aijwwwj

⌅
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