
2.4. Wednesday for MAT3040
Reviewing.

• Basis, Dimension

• Basis Extension

• W1
T

W2 = ∆ implies W1 � W2 = W1 + W2 (Direct Sum).

2.4.1. Remark on Direct Sum

Proposition 2.13 The set W1 + W2 = W1 � W2 iff any www 2 W1 + W2 can be uniquely

expressed as

www = www1 + www2,

where wwwi 2 Wi for i = 1,2.

R We can also define addiction among finite set of vector spaces {W1, . . . ,Wk}.

If www1 + · · ·+ wwwk = 000 implies wwwi = 0,8i, then we can write W1 + · · ·+ Wk as

W1 � · · ·� Wk

Proposition 2.14 — Complementation. Let W  V be a vector subspace of a fintie

dimension vector space V. Then there exists W 0  V such that

W � W 0 = V.

Proof. It’s clear that dim(W) := k  n := dim(V). Suppose {vvv1, . . . ,vvvk} is a basis of W.

By the basis extension proposition, we can extend it into {vvv1, . . . ,vvvk,vvvk+1, . . . ,vvvn},

which is a basis of V.

Therefore, we take W 0 = span{vvvk+1, . . . ,vvvn}, which follows that
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1. W + W 0 = V: 8vvv 2 V has the form

vvv = (a1vvv1 + · · ·+ akvvvk) + (ak+1vvvk+1 + · · ·+ anvvvn) ,

where a1vvv1 + · · ·+ akvvvk 2 W and ak+1vvvk+1 + · · ·+ anvvvn 2 W 0.

2. W
T

W 0 = {000}: Suppose vvv 2 W
T

W 0, i.e.,

vvv = (b1vvv1 + · · ·+ bkvvvk) + (0vvvk+1 + · · ·+ 0vvvn) 2 W

= (0vvv1 + · · ·+ 0vvvk) + (bk+1vvvk+1 + · · ·+ bnvvvn) 2 W 0.

By the uniqueness of coordinates, we imply b1 = · · · = bn = 0, i.e., vvv = 000.

Therefore, we conclude that W � W 0 = V. ⌅

2.4.2. Linear Transformation

Definition 2.7 [Linear Transformation] Let V,W be vector spaces. Then T : V ! W is a

linear transformation if

T(avvv1 + bvvv2) = aT(vvv1) + bT(vvv2),

for 8a, b 2 F and vvv1,vvv2 2 V. ⌅

⌅ Example 2.12 1. The transformation T : R
n ! R

m defined as xxx 7! AAAxxx (where

AAA 2 R
m⇥n) is a linear transformation.

2. The transformation T : R[x]! R[x] defined as

p(x) 7! T(p(x)) = p0(x), p(x) 7! T(p(x)) =
R x

0 p(t)dt

is a linear transformation
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3. The transformation T : Mn⇥n(R)! R defined as

AAA 7! trace(AAA) :=
n

Â
i=1

aii

is a linear transformation.

However, the transformation

AAA 7! det(AAA)

is not a linear transformation.

⌅

Definition 2.8 [Kernel/Image] Let T : V ! W be a linear transfomation.

1. The kernel of T is

ker(T) = T�1(000) = {vvv 2 V | T(vvv) = 000}

2. The image (or range) of T is

Im(T) = T(vvv) = {T(vvv) 2 W | vvv 2 V}

⌅

⌅ Example 2.13 1. Let T : R
n ! R

n be a linear transformation with T(xxx) = AAAxxx,

then

ker(T) = {xxx 2 R
n | AAAxxx = 000} = Null(AAA) Null Space

and

Im(T) = {AAAxxx | xxx 2 R
n} = Col(AAA) = span{columns of AAA} Column Space

2. For T(p(x)) = p0(x), ker(T) = {constant polynomials} and Im(T) = R[x].

⌅
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Proposition 2.15 The kernel or image for a linear transformation T : V ! W also forms

a vector subspace:

ker(T)  V, Im(T)  W

Proof. For vvv1,vvv2 2 ker(T), we imply

T(avvv1 + bvvv2) = 000,

which implies avvv1 + bvvv2 2 ker(T).

The remaining proof follows similarly. ⌅

Definition 2.9 [Rank/Nullity] Let V,W be finite dimensional vector spaces and T : V !W

a linear transformation. Then we define

rank(T) = dim(im(T))

nullity(T) = dim(ker(T))

⌅

R Let

HomF(V,W) = {all linear transformations T : V ! W},

and we can define the addiction and scalar multiplication to make it a vector

space:

1. For T,S 2 HomF(V,W), define

(T + S)(vvv) = T(vvv) + S(vvv),

which implies T + S 2 HomF(V,W).

2. Also, define

(gT)(vvv) = gT(vvv), for 8g 2 F,

which implies gT 2 HomF(V,W).
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In particular, if V = R
n,W = R

m, then

HomF(V,W) = Mm⇥n(R).

Proposition 2.16 If dim(V) = n,dim(W) = m, then dim(HomF(V,W)) = mn.

Proposition 2.17 There are anternative characterizations for the injectivity and surjec-

tivity of lienar transformation T:

1. The linear transformation T is injective if and only if

ker(T) = 0,() nullity(T) = 0.

2. The linear transformation T is surjective if and only if

im(T) = W,() rank(T) = dim(W).

3. If T is bijective, then T�1 is a linear transformation.

Proof. 1. (a) For the forward direction of (1),

xxx 2 ker(T) =) T(xxx) = 0 = T(000) =) xxx = 000

(b) For the reverse direction of (1),

T(xxx) = T(yyy) =) T(xxx � yyy) = 000 =) xxx � yyy 2 ker(T) = 000 =) xxx = yyy

2. The proof follows similar idea in (1).

3. Let T�1 : W ! V. For all www1,www2 2 W, there exists vvv1,vvv2 2 V such that T(vvvi) = wwwi,

i.e., T�1(wwwi) = vvvi i = 1,2.
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Consider the mapping

T(avvv1 + bvvv2) = aT(vvv1) + bT(vvv2)

= awww1 + bwww2,

which implies avvv1 + bvvv2 = T�1(awww1 + bwww2), i.e.,

aT�1(www1) + bT�1(www2) = T�1(awww1 + bwww2).

⌅

Definition 2.10 [isomorphism]

We say the vector subspaces V and W are isomorphic if there exists a bijective linear

transfomation T : V ! W. (V ⇠= W)

This mapping T is called an isomorphism from V to W. ⌅

R If dim(V) = dim(W) = n < •, then V ⇠= W:

Take {vvv1, . . . ,vvvn},{www1, . . . ,wwwn} as basis of V and W, respectively. Then one can

construct T : V ! W satisfying T(vvvi) = wwwi for 8i as follows:

T(a1vvv1 + · · ·+ anvvvn) = anwww1 + · · ·+ anwwwn 8ai 2 F

It’s clear that our constructed T is a linear transformation.

R V ⇠=W doesn’t imply any linear transformations T : V !W is an isomorphism.

e.g., T(vvv) = 000 is not an isomorphic if W 6= {000}.

Theorem 2.3 — Rank-Nullity Theorem. Let T : V ! W be a linear transformation

with dim(V) < •. Then

rank(T) + nullity(T) = dim(V).
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Proof. Since ker(T)  V, by proposition (2.14), there exists V1  V such that

V = ker(T)� V1.

1. Consider the transformation T |V1 : V1 ! T(V1), which is an isomorphism, since:

• Surjectivity is immediate

• For vvv 2 ker(T |V1),

T(vvv) = 000 =) vvv 2 ker(T),

which implies vvv = 000 since vvv 2 ker(T) \ V1 = 0, i.e., the injectivity follows.

Therefore, dim(V1) = dim(T(V1)).

2. Secondly, given an isomorphism T from X to Y with dim(X)< •, then dim(X) =

dim(T(X)). The reason follows from assignment 1 questions (8-9):

{vvv1, . . . ,vvvk} is a basis of X =) {T(vvv1), . . . , T(vvvk)} is a basis of Y

3. Note that T(V1) = T(V) = im(T), since:

• for 8vvv 2 V, vvv = vvvk + vvv1, where vvvk 2 ker(T),vvv1 2 V1, which implies

T(vvv) = T(vvvk) + T(vvv1) = 000 + T(vvv1),

i.e., T(V) ✓ T(V1) ✓ T(V), i.e., T(V) = T(V1).

4. By the proof of complementation,

dim(V) = dim(ker(T)) + dim(V1)

= nullity(T) + dim(T(V1))

= nullity(T) + dim(T(V))

= nullity(T) + dim(im(T))

= nullity(T) + rank(T).
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⌅

59


	Acknowledgments
	Notations
	Week1
	Monday for MAT3040
	Introduction to Advanced Linear Algebra
	Vector Spaces

	Monday for MAT3006
	Overview on uniform convergence
	Introduction to MAT3006
	Metric Spaces

	Monday for MAT4002
	Introduction to Topology
	Metric Spaces

	Wednesday for MAT3040
	Review
	Spanning Set
	Linear Independence and Basis

	Wednesday for MAT3006
	Convergence of Sequences
	Continuity
	Open and Closed Sets

	Wednesday for MAT4002
	Forget about metric
	Topological Spaces
	Closed Subsets


	Week2
	Monday for MAT3040
	Basis and Dimension
	Operations on a vector space

	Monday for MAT3006
	Remark on Open and Closed Set
	Boundary, Closure, and Interior

	Monday for MAT4002
	Convergence in topological space
	Interior, Closure, Boundary

	Wednesday for MAT3040
	Remark on Direct Sum
	Linear Transformation

	Wednesday for MAT3006
	Compactness
	Completeness

	Wednesday for MAT4002
	Remark on Closure
	Functions on Topological Space
	Subspace Topology
	Basis (Base) of a topology



