Chapter 2

Week2

2.1. Monday for MAT3040

Reviewing.

- 1. Linear Combination and Span
- 2. Linear Independence
- Basis: a set of vectors {v₁,...,v_k} is called a **basis** for *V* if {v₁,...,v_k} is linearly independent, and *V* = span{v₁,...,v_k}.

Lemma: Given $V = \text{span}\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$, we can find a basis for this set. Here *V* is said to be **finitely generated**.

4. Lemma: The vector $\boldsymbol{w} \in \operatorname{span}\{\boldsymbol{v}_1,\ldots,\boldsymbol{v}_n\} \setminus \operatorname{span}\{\boldsymbol{v}_2,\ldots,\boldsymbol{v}_n\}$ implies that

$$\boldsymbol{v}_1 \in \operatorname{span}\{\boldsymbol{w}, \boldsymbol{v}_2, \dots, \boldsymbol{v}_n\} \setminus \operatorname{span}\{\boldsymbol{v}_2, \dots, \boldsymbol{v}_n\}$$

2.1.1. Basis and Dimension

Theorem 2.1 Let *V* be a finitely generated vector space. Suppose $\{v_1, ..., v_m\}$ and $\{w_1, ..., w_n\}$ are two basis of *V*. Then m = n. (where *m* is called the **dimension**)

Proof. Suppose on the contrary that $m \neq n$. Without loss of generality (w.l.o.g.), assume that m < n. Let $\boldsymbol{v}_1 = \alpha_1 \boldsymbol{w}_1 + \cdots + \alpha_n \boldsymbol{w}_n$, with some $\alpha_i \neq 0$. w.l.o.g., assume $\alpha_1 \neq 0$. Therefore,

$$\boldsymbol{v}_1 \in \operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\} \setminus \operatorname{span}\{\boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}$$
(2.1)

which implies that $\boldsymbol{w}_1 \in \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\} \setminus \operatorname{span}\{\boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}$.

Then we claim that $\{\boldsymbol{v}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}$ is a basis of *V*:

1. Note that $\{\boldsymbol{v}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}$ is a spanning set:

$$\boldsymbol{w}_1 \in \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\} \implies \{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\} \subseteq \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}$$
$$\implies \operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\} \subseteq \operatorname{span}\{\operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}\} \subseteq \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}$$

Since $V = \operatorname{span}\{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}$, we have $\operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\} = V$.

2. Then we show the linear independence of $\{v_1, w_2, ..., w_n\}$. Consider the equation

$$\beta_1 \boldsymbol{v}_1 + \beta_2 \boldsymbol{v}_2 + \cdots + \beta_n \boldsymbol{w}_n = \boldsymbol{0}$$

(a) When $\beta_1 \neq 0$, we imply

$$\boldsymbol{v}_1 = \left(-\frac{\beta_2}{\beta_1}\right) \boldsymbol{w}_2 + \cdots + \left(-\frac{\beta_n}{\beta_1}\right) \boldsymbol{w}_n \in \operatorname{span}\{\boldsymbol{w}_2,\ldots,\boldsymbol{w}_n\},$$

which contradicts (2.1).

(b) When $\beta_1 = 0$, then $\beta_2 \boldsymbol{w}_2 + \cdots + \beta_n \boldsymbol{w}_n = \boldsymbol{0}$, which implies $\beta_2 = \cdots = \beta_n = 0$, due to the independence of $\{\boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}$.

Therefore, $v_2 \in \text{span}\{v_1, w_2, ..., w_n\}$, i.e.,

$$\boldsymbol{v}_2 = \gamma_1 \boldsymbol{v}_1 + \cdots + \gamma_n \boldsymbol{v}_n$$
,

where $\gamma_2, ..., \gamma_n$ cannot be all zeros, since otherwise $\{\boldsymbol{v}_1, \boldsymbol{v}_2\}$ are linearly dependent, i.e., $\{\boldsymbol{v}_1, ..., \boldsymbol{v}_m\}$ cannot form a basis. w.l.o.g., assume $\gamma_2 \neq 0$, which implies

$$\boldsymbol{w}_2 \in \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{w}_3, \ldots, \boldsymbol{w}_n\} \setminus \operatorname{span}\{\boldsymbol{v}_1, \boldsymbol{w}_3, \ldots, \boldsymbol{w}_n\}.$$

Following the similar argument above, $\{\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{w}_3, \dots, \boldsymbol{w}_n\}$ forms a basis of *V*.

Continuing the argument above, we imply $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_m, \boldsymbol{w}_{m+1}, \ldots, \boldsymbol{w}_n\}$ is a basis of *V*.

Since $\{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_m\}$ is a basis as well, we imply

$$\boldsymbol{w}_{m+1} = \delta_1 \boldsymbol{v}_1 + \cdots + \delta_m \boldsymbol{v}_m$$

for some $\delta_i \in \mathbb{F}$, i.e., $\{\boldsymbol{v}_1, \dots, \boldsymbol{v}_m, \boldsymbol{w}_{m+1}\}$ is linearly dependent, which is a contradiction.

Example 2.1 A vector space may have more than one basis. Suppose $V = \mathbb{F}^n$, it is clear that $\dim(V) = n$, and

 $\{e_1,\ldots,e_n\}$ is a basis of V, where e_i denotes a unit vector.

There could be other basis of V, such as

	(1)		$\begin{pmatrix} 1 \end{pmatrix}$		(1)		
	0	0 : 0)	1	<i>,,</i>	1	,	
	:		:		:		Ì
	0)		0)		(1)		

Actually, the columns of any invertible $n \times n$ matrix forms a basis of V.

Example 2.2 Suppose $V = M_{m \times n}(\mathbb{R})$, we claim that $\dim(V) = mn$:

$$\left\{ E_{ij} \left| egin{array}{c} 1 \leq i \leq m \\ 1 \leq j \leq n \end{array}
ight\}$$
 is a basis of V ,

where E_{ij} is m imes n matrix with 1 at (i, j)-th entry, and 0s at the remaining entries.

• Example 2.3 Suppose $V = \{ all \text{ polynomials of degree } \leq n \}$, then $\dim(V) = n + 1$.

• Example 2.4 Suppose $V = \{ \boldsymbol{A} \in M_{n \times n}(\mathbb{R}) \mid \boldsymbol{A}^{\mathrm{T}} = \boldsymbol{A} \}$, then $\dim(V) = \frac{n(n+1)}{2}$.

• Example 2.5 Let $W = \{ \boldsymbol{B} \in M_{n \times n}(\mathbb{R}) \mid \boldsymbol{B}^{\mathrm{T}} = -\boldsymbol{B} \}$, then $\dim(V) = \frac{n(n-1)}{2}$.

- R Sometimes it should be classified the field \mathbb{F} for the scalar multiplication to define a vector space. Conside the example below:
 - Let V = C, then dim(C) = 1 for the scalar multiplication defined under the field C.
 - Let V = span{1,i} = C, then dim(C) = 2 for the scalar multiplication defined under the field ℝ, since all z ∈ V can be written as z = a + bi, ∀a, b ∈ ℝ.
 - 3. Therefore, to aviod confusion, it is safe to write

$$\dim_{\mathbb{C}}(\mathbb{C}) = 1$$
, $\dim_{\mathbb{R}}(\mathbb{C}) = 2$.

2.1.2. Operations on a vector space

Note that the basis for a vector space is characterized as the **maximal linearly independent set**.

Theorem 2.2 — **Basis Extension**. Let *V* be a finite dimensional vector space, and $\{v_1, ..., v_k\}$ be a linearly independent set on *V*, Then we can extend it to the basis $\{v_1, ..., v_k, v_{k+1}, ..., v_n\}$ of *V*.

Proof. • Suppose dim(*V*) = n > k, and $\{\boldsymbol{w}_1, \dots, \boldsymbol{w}_n\}$ is a basis of *V*. Consider the set $\{\boldsymbol{w}_1, \dots, \boldsymbol{w}_n\} \cup \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$, which is linearly dependent, i.e.,

$$\alpha_1 \boldsymbol{w}_1 + \cdots + \alpha_n \boldsymbol{w}_n + \beta_1 \boldsymbol{v}_1 + \cdots + \beta_k \boldsymbol{v}_k = \boldsymbol{0},$$

with some $\alpha_i \neq 0$, since otherwise this equation will only have trivial solution. w.l.o.g., assume $\alpha_1 \neq 0$.

• Therefore, consider the set $\{\boldsymbol{w}_2, \ldots, \boldsymbol{w}_n\} \cup \{\boldsymbol{v}_1, \ldots, \boldsymbol{v}_k\}$. We keep removing elements

from $\{\boldsymbol{w}_2, \ldots, \boldsymbol{w}_n\}$ until we first get the set

$$S \bigcup \{ \boldsymbol{v}_1, \ldots, \boldsymbol{v}_k \},$$

with $S \subseteq \{\boldsymbol{w}_1, \boldsymbol{w}_2, \dots, \boldsymbol{w}_n\}$ and $S \cup \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$ is linearly independent, i.e., *S* is a maximal subset of $\{\boldsymbol{w}_1, \dots, \boldsymbol{w}_n\}$ such that $S \cup \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$ is linearly independent.

- Rewrite $S = \{\boldsymbol{v}_{k+1}, \dots, \boldsymbol{v}_m\}$ and therefore $S' = \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k, \boldsymbol{v}_{k+1}, \dots, \boldsymbol{v}_m\}$ are linearly independent. It suffices to show S' spans V.
 - Indeed, for all $\boldsymbol{w}_i \in \{\boldsymbol{w}_1, \dots, \boldsymbol{w}_n\}$, $\boldsymbol{w}_i \in \text{span}(S')$, since otherwise the equation

$$\alpha \boldsymbol{w}_i + \beta_1 \boldsymbol{v}_1 + \cdots + \beta_m \boldsymbol{v}_m = \boldsymbol{0} \implies \alpha = 0,$$

which implies that $\beta_1 \boldsymbol{v}_1 + \cdots + \beta_m \boldsymbol{v}_m = \boldsymbol{0}$ admits only trivial solution, i.e.,

 $\{\boldsymbol{w}_i\} \bigcup S' = \{\boldsymbol{w}_i\} \bigcup S \bigcup \{\boldsymbol{v}_1, \dots, \boldsymbol{v}_k\}$ is linearly independent,

which violetes the maximality of *S*.

Therefore, all $\{\boldsymbol{w}_1, \dots, \boldsymbol{w}_n\} \subseteq \operatorname{span}(S')$, which implies $\operatorname{span}(S') = V$. Therefore, S' is a basis of V.

Start with a spanning set, we keep removing something to form a basis; start with independent set, we keep adding something to form a basis. In other words, the basis is both the minimal spanning set, and the maximal linearly independent set.

Definition 2.1 [Direct Sum] Let W_1, W_2 be two vector subspaces of V, then 1. $W_1 \cap W_2 := \{ \boldsymbol{w} \in V \mid \boldsymbol{w} \in W_1, \text{ and } \boldsymbol{w} \in W_2 \}$ 2. $W_1 + W_2 := \{ \boldsymbol{w}_1 + \boldsymbol{w}_2 \mid \boldsymbol{w}_i \in W_i \}$

3. If furthermore that $W_1 \cap W_2 = \{\mathbf{0}\}$, then $W_1 + W_2$ is denoted as $W_1 \oplus W_2$, which is called **direct sum**.

Proposition 2.1 $W_1 \cap W_2$ and $W_1 + W_2$ are vector subspaces of *V*.