
Chapter 2

Week2

2.1. Monday for MAT3040
Reviewing.

1. Linear Combination and Span

2. Linear Independence

3. Basis: a set of vectors {vvv1, . . . ,vvvk} is called a basis for V if {vvv1, . . . ,vvvk} is linearly

independent, and V = span{vvv1, . . . ,vvvk}.

Lemma: Given V = span{vvv1, . . . ,vvvk}, we can find a basis for this set. Here V is

said to be finitely generated.

4. Lemma: The vector www 2 span{vvv1, . . . ,vvvn} \ span{vvv2, . . . ,vvvn} implies that

vvv1 2 span{www,vvv2, . . . ,vvvn} \ span{vvv2, . . . ,vvvn}

2.1.1. Basis and Dimension

Theorem 2.1 Let V be a finitely generated vector space. Suppose {vvv1, . . . ,vvvm} and

{www1, . . . ,wwwn} are two basis of V. Then m = n. (where m is called the dimension)

Proof. Suppose on the contrary that m 6= n. Without loss of generality (w.l.o.g.), assume

that m < n. Let vvv1 = a1www1 + · · · + anwwwn, with some ai 6= 0. w.l.o.g., assume a1 6= 0.

Therefore,

vvv1 2 span{www1,www2, . . . ,wwwn} \ span{www2, . . . ,wwwn} (2.1)

which implies that www1 2 span{vvv1,www2, . . . ,wwwn} \ span{www2, . . . ,wwwn}.
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Then we claim that {vvv1,www2, . . . ,wwwn} is a basis of V:

1. Note that {vvv1,www2, . . . ,wwwn} is a spannning set:

www1 2 span{vvv1,www2, . . . ,wwwn} =) {www1,www2, . . . ,wwwn} ✓ span{vvv1,www2, . . . ,wwwn}

=) span{www1,www2, . . . ,wwwn} ✓ span{span{vvv1,www2, . . . ,wwwn}} ✓ span{vvv1,www2, . . . ,wwwn}

Since V = span{www1,www2, . . . ,wwwn}, we have span{vvv1,www2, . . . ,wwwn} = V.

2. Then we show the linear independence of {vvv1,www2, . . . ,wwwn}. Consider the equation

b1vvv1 + b2vvv2 + · · ·+ bnwwwn = 000

(a) When b1 6= 0, we imply

vvv1 =

✓
�b2

b1

◆
www2 + · · ·+

✓
�bn

b1

◆
wwwn 2 span{www2, . . . ,wwwn},

which contradicts (2.1).

(b) When b1 = 0, then b2www2 + · · ·+ bnwwwn = 000, which implies b2 = · · · = bn = 0,

due to the independence of {www2, . . . ,wwwn}.

Therefore, vvv2 2 span{vvv1,www2, . . . ,wwwn}, i.e.,

vvv2 = g1vvv1 + · · ·+ gnvvvn,

where g2, . . . ,gn cannot be all zeros, since otherwise {vvv1,vvv2} are linearly dependent,

i.e., {vvv1, . . . ,vvvm} cannot form a basis. w.l.o.g., assume g2 6= 0, which implies

www2 2 span{vvv1,vvv2,www3, . . . ,wwwn} \ span{vvv1,www3, . . . ,wwwn}.

Following the simlar argument above, {vvv1,vvv2,www3, . . . ,wwwn} forms a basis of V.

Continuing the argument above, we imply {vvv1, . . . ,vvvm,wwwm+1, . . . ,wwwn} is a basis of V.
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Since {vvv1, . . . ,vvvm} is a basis as well, we imply

wwwm+1 = d1vvv1 + · · ·+ dmvvvm

for some di 2 F, i.e., {vvv1, . . . ,vvvm,wwwm+1} is linearly dependent, which is a contradction.

⌅

⌅ Example 2.1 A vector space may have more than one basis.

Suppose V = F
n, it is clear that dim(V) = n, and

{eee1, . . . , eeen} is a basis of V, where eeei denotes a unit vector.

There could be other basis of V, such as

8
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1
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1

1
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,

9
>>>>>>>=

>>>>>>>;

Actually, the columns of any invertible n ⇥ n matrix forms a basis of V. ⌅

⌅ Example 2.2 Suppose V = Mm⇥n(R), we claim that dim(V) = mn:

8
><

>:
Eij

�������

1  i  m

1  j  n

9
>=

>;
is a basis of V,

where Eij is m ⇥ n matrix with 1 at (i, j)-th entry, and 0s at the remaining entries. ⌅

⌅ Example 2.3 Suppose V = {all polynomials of degree  n}, then dim(V) = n + 1. ⌅

⌅ Example 2.4 Supppose V = {AAA 2 Mn⇥n(R) | AAAT = AAA}, then dim(V) = n(n+1)
2 . ⌅
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⌅ Example 2.5 Let W = {BBB 2 Mn⇥n(R) | BBBT = �BBB}, then dim(V) = n(n�1)
2 . ⌅

R Sometimes it should be classified the field F for the scalar multiplication to

define a vector space. Conside the example below:

1. Let V = C, then dim(C) = 1 for the scalar multiplication defined under

the field C.

2. Let V = span{1, i} = C, then dim(C) = 2 for the scalar multiplication

defined under the field R, since all z 2 V can be written as z = a + bi,

8a,b 2 R.

3. Therefore, to aviod confusion, it is safe to write

dimC(C) = 1, dimR(C) = 2.

2.1.2. Operations on a vector space

Note that the basis for a vector space is characterized as the maximal linearly inde-

pendent set.

Theorem 2.2 — Basis Extension. Let V be a finite dimensional vector space, and

{vvv1, . . . ,vvvk} be a linearly independent set on V, Then we can extend it to the basis

{vvv1, . . . ,vvvk,vvvk+1, . . . ,vvvn} of V.

Proof. • Suppose dim(V) = n > k, and {www1, . . . ,wwwn} is a basis of V. Consider the

set {www1, . . . ,wwwn}
S{vvv1, . . . ,vvvk}, which is linearly dependent, i.e.,

a1www1 + · · ·+ anwwwn + b1vvv1 + · · ·+ bkvvvk = 000,

with some ai 6= 0, since otherwise this equation will only have trivial solution.

w.l.o.g., assume a1 6= 0.

• Therefore, consider the set {www2, . . . ,wwwn}
S{vvv1, . . . ,vvvk}. We keep removing elements
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from {www2, . . . ,wwwn} until we first get the set

S
[
{vvv1, . . . ,vvvk},

with S ✓ {www1,www2, . . . ,wwwn} and S
S{vvv1, . . . ,vvvk} is linearly independent, i.e., S is a

maximal subset of {www1, . . . ,wwwn} such that S
S{vvv1, . . . ,vvvk} is linearly independent.

• Rewrite S = {vvvk+1, . . . ,vvvm} and therefore S0 = {vvv1, . . . ,vvvk,vvvk+1, . . . ,vvvm} are linearly

independent. It suffices to show S0 spans V.

– Indeed, for all wwwi 2 {www1, . . . ,wwwn}, wwwi 2 span(S0), since otherwise the equation

awwwi + b1vvv1 + · · ·+ bmvvvm = 000 =) a = 0,

which implies that b1vvv1 + · · ·+ bmvvvm = 000 admits only trivial solution, i.e.,

{wwwi}
[

S0 = {wwwi}
[

S
[
{vvv1, . . . ,vvvk} is linearly independent,

which violetes the maximality of S.

Therefore, all {www1, . . . ,wwwn} ✓ span(S0), which implies span(S0) = V.

Therefore, S0 is a basis of V.

⌅

R Start with a spanning set, we keep removing something to form a basis; start

with independent set, we keep adding something to form a basis.

In other words, the basis is both the minimal spanning set, and the maximal

linearly independent set.

Definition 2.1 [Direct Sum] Let W1,W2 be two vector subspaces of V, then

1. W1
T

W2 := {www 2 V | www 2 W1, and www 2 W2}

2. W1 + W2 := {www1 + www2 | wwwi 2 Wi}
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3. If furthermore that W1
T

W2 = {000}, then W1 + W2 is denoted as W1 � W2, which

is called direct sum.

⌅

Proposition 2.1 W1
T

W2 and W1 + W2 are vector subspaces of V.
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