Chapter 1

Week1

1.1. Monday for MAT3040

1.1.1. Introduction to Advanced Linear Algebra

Advanced Linear Algebra is one of the most important course in MATH major, with pre-request MAT2040. This course will offer the really linear algebra knowledge.

What the content will be covered?.

- In MAT2040 we have studied the space \mathbb{R}^n ; while in MAT3040 we will study the general vector space *V*.
- In MAT2040 we have studied the *linear transformation* between Euclidean spaces,
 i.e., *T* : ℝⁿ → ℝ^m; while in MAT3040 we will study the linear transformation from vector spaces to vector spaces: *T* : *V* → *W*
- In MAT2040 we have studied the eigenvalues of *n* × *n* matrix *A*; while in MAT3040 we will study the eigenvalues of a linear operator *T* : *V* → *V*.
- In MAT2040 we have studied the dot product *x* · *y* = ∑ⁿ_{i=1} x_iy_i; while in MAT3040 we will study the inner product ⟨*v*₁, *v*₂⟩.

Why do we do the generalization?. We are studying many other spaces, e.g., $C(\mathbb{R})$ is called the space of all functions on \mathbb{R} , $C^{\infty}(\mathbb{R})$ is called the space of all infinitely differentiable functions on \mathbb{R} , $\mathbb{R}[x]$ is the space of polynomials of one-variable.

Example 1.1 1. Consider the Laplace equation $\Delta f = 0$ with linear operator Δ :

$$\Delta: \mathcal{C}^{\infty}(\mathbb{R}^3) \to \mathcal{C}^{\infty}(\mathbb{R}^3) \quad f \mapsto (\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2})f$$

The solution to the PDE $\Delta f = 0$ is the 0-eigenspace of Δ .

2. Consider the Schrödinger equation $\hat{H}f = Ef$ with the linear operator

$$\hat{H}: \mathcal{C}^{\infty}(\mathbb{R}^3) \to \mathbb{R}^3, \quad f \to \left[\frac{-\hbar^2}{2\mu}\nabla^2 + V(x, y, z)\right] f$$

Solving the equation $\hat{H}f = Ef$ is equivalent to finding the eigenvectors of \hat{H} . In fact, the eigenvalues of \hat{H} are **discrete**.

1.1.2. Vector Spaces

Definition 1.1 [Vector Space] A vector space over a field \mathbb{F} (in particular, $\mathbb{F} = \mathbb{R}$ or \mathbb{C}) is a set of objects V equipped with vector addiction and scalar multiplication such that

- 1. the vector addiction + is closed with the rules:
 - (a) Commutativity: $\forall v_1, v_2 \in V, v_1 + v_2 = v_2 + v_1$.
 - (b) Associativity: $v_1 + (v_2 + v_3) = (v_1 + v_2) + v_3$.
 - (c) Addictive Identity: $\exists \mathbf{0} \in V$ such that $\mathbf{0} + \mathbf{v} = \mathbf{v}$, $\forall \mathbf{v} \in V$.

2. the scalar multiplication is closed with the rules:

- (a) Distributive: $\alpha(\boldsymbol{v}_1 + \boldsymbol{v}_2) = \alpha \boldsymbol{v}_1 + \alpha \boldsymbol{v}_2, \forall \alpha \in \mathbb{F} \text{ and } \boldsymbol{v}_1, \boldsymbol{v}_2 \in V$
- (b) **Distributive**: $(\alpha_1 + \alpha_2)\boldsymbol{v} = \alpha_1 \boldsymbol{v} + \alpha_2 \boldsymbol{v}$
- (c) Compatibility: $a(b\boldsymbol{v}) = (ab)\boldsymbol{v}$ for $\forall a, b \in \mathbb{F}$ and $\boldsymbol{b} \in V$.
- (d) 0v = 0, 1v = v.

Here we study several examples of vector spaces:

- Example 1.2 For $V = \mathbb{F}^n$, we can define
 - 1. Addictive Identity:

$$\mathbf{0} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix}$$

2. Scalar Multiplication:

$$\alpha \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} \alpha x_1 \\ \vdots \\ \alpha x_n \end{pmatrix}$$

3. Vector Addiction:

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$

• Example 1.3 1. It is clear that the set $V = M_{n \times n}(\mathbb{F})$ (the set of all $m \times n$ matrices) is a vector space as well.

- 2. The set $V = \mathcal{C}(\mathbb{R})$ is a vector space:
 - (a) Vector Addiction:

$$(f+g)(x) = f(x) + g(x), \forall f, g \in V$$

(b) Scalar Multiplication:

$$(\alpha f)(x) = \alpha f(x), \forall \alpha \in \mathbb{R}, f \in V$$

(c) Addictive Identity is a zero function, i.e., $\mathbf{0}(x) = 0$ for all $x \in \mathbb{R}$.

Definition 1.2 A sub-collection $W \subseteq V$ of a vector space V is called a **vector subspace** of V if W itself forms a vector space, denoted by $W \leq V$.

■ Example 1.4 1. For V = ℝ³, we claim that W = {(x,y,0) | x, y ∈ ℝ} ≤ V
2. W = {(x,y,1) | x, y ∈ ℝ} is not the vector subspace of V.

Proposition 1.1 $W \subseteq V$ is a **vector subspace** of *V* iff for $\forall \boldsymbol{w}_1, \boldsymbol{w}_2 \in W$, we have $\alpha \boldsymbol{w}_1 + \beta \boldsymbol{w}_2 \in W$, for $\forall \alpha, \beta \in \mathbb{F}$.

• Example 1.5 1. For $V = M_{n \times n}(\mathbb{F})$, the subspace $W = \{A \in V \mid \mathbf{A}^{\mathrm{T}} = \mathbf{A}\} \leq V$ 2. For $V = \mathcal{C}^{\infty}(\mathbb{R})$, define $W = \{f \in V \mid \frac{\mathrm{d}^2}{\mathrm{d}x^2}f + f = 0\} \leq V$. For $f, g \in W$, we have

$$(\alpha f + \beta g)'' = \alpha f'' + \beta g'' = \alpha (-f) + \beta (-g) = -(\alpha f + \beta g),$$

which implies $(\alpha f + \beta g)'' + (\alpha f + \beta g) = 0.$