Chapter 14

Week14

14.1. Monday for MAT3040

14.1.1. Multilinear Tensor Product

Definition 14.1 [Tensor Product among More spaces] Let V_1, \ldots, V_p be vector spaces over \mathbb{F} . Let $S = \{(v_1, \ldots, v_p) \mid v_i \in V_i\}$ (We assume no relations among distinct elements in S), and define $\mathfrak{X} = \operatorname{span}(S)$.

1. Then define the tensor product space $V_1 \otimes \cdots \otimes V_p = \mathfrak{X}/y$, where y is the vector subspace of \mathfrak{X} spanned by vectors of the form

$$(v_1,\ldots,v_i+v'_i,\ldots,v_p)-(v_1,\ldots,v_i,\ldots,v_p)-(v_1,\ldots,v'_i,\ldots,v_p),$$

and

$$(v_1,\ldots,\alpha v_i,\ldots,v_p)-\alpha(v_1,\ldots,v_i,\ldots,v_p)$$

where i = 1, 2, ..., p.

2. The tensor product for vectors is defined as

$$v_1 \otimes \cdots \otimes v_p := \{(v_1, \dots, v_p) + y\} \in V_1 \otimes \cdots \otimes V_p$$

R Similar as in tensor product among two space,

1. We have

$$v_1 \otimes \cdots \otimes (\alpha v_i + \beta v_i') \otimes \cdots \otimes v_p = \alpha (v_1 \otimes \cdots \otimes v_i \otimes \cdots \otimes v_p) + \beta (v_1 \otimes \cdots \otimes v_i' \otimes \cdots \otimes v_p)$$

2. A general vector in $V_1 \otimes \cdots \otimes V_p$ is

$$\sum_{i=1}^{n} (W_1^{(i)} \otimes \cdots \otimes W_p^{(i)}), \text{ where } W_j^{(i)} \in V_j, j = 1, \dots, p$$

3. Let $\mathcal{B}_i = \{v_i^{(1)}, \dots, v_i^{(\dim(V_i))}\}$ be a basis of $V_i, i = 1, \dots, p$, then

$$\mathcal{B} = \{V_1^{(\alpha_1)} \otimes \cdots \otimes V_p^{(\alpha_p)} \mid 1 \le \alpha_i \le \dim(V_i)\}$$

is a basis of $V_1 \otimes \cdots \otimes V_p$. As a result,

$$\dim(V_1 \otimes \cdots \otimes V_p) = (\dim(V_1)) \times \cdots \times (\dim(V_p))$$

Theorem 14.1 — Universal Property of multi-linear tensor. Let $Obj = \{\phi : V_1 \times \cdots \times V_p \rightarrow W \mid \phi \text{ is a } p\text{-linear map}\}$, i.e.,

$$\phi(v_1,\ldots,\alpha v_i+\beta v_i',\ldots,v_o)=\alpha\phi(v_1,\ldots,v_i,\ldots,v_p)+\beta\phi(v_1,\ldots,v_i',\ldots,v_p),$$

$$\forall v_i,v_i'\in V_i, i=1,\ldots,p, \forall \alpha,\beta\in\mathbb{F}.$$

For instance, the multiplication of *p* matrices is a *p*-linear map.

Then the mapping in the Obj,

$$i: V_1 \times V_p \to V_1 \otimes \cdots \otimes V_p$$

with $(v_1, \dots, v_p) \mapsto v_1 \otimes \cdots \otimes v_p$

satisfies the universal property. In other words, for any $\phi: V_1 \times \cdots \times V_p \in \text{Obj}$, there

exists the unquue linear transformation

$$\bar{\phi}: V_1 \otimes \cdots \otimes V_p \to W$$

such that the diagram below commutes:

In other words, $\phi = \bar{\phi} \circ i$.

Corollary 14.1 Let $T_i:V_i\to V_i'$ be a linear transformation, $1\leq i\leq p$. There is a unique linear transformation

$$\begin{array}{ll} (T_1 \otimes \cdots \otimes T_p): & V_1 \otimes \cdots \otimes V_p \to V_1' \otimes \cdots \otimes V_p' \\ \\ \text{satisfying} & (T_1 \otimes \cdots \otimes T_p)(v_1 \otimes \cdots \otimes v_p) = T_1(v_1) \otimes \cdots \otimes T_p(v_p) \end{array}$$

Proof. Construct the mapping

$$\phi: V_1 \times \cdots \times V_p \to V_1' \otimes \cdots \otimes V_p'$$

with $(v_1, \dots, v_p) \mapsto T_1(v_1) \otimes \cdots \otimes T_p(v_p)$

which is indeed *p*-linear.

By the universal property, we induce the unique linear transformation

$$\bar{\phi}: V_1 \otimes \cdots \otimes V_p \to V_1' \otimes \cdots \otimes V_p'$$

Notation. To make life easier, from now on, we only consider $V_1 = \cdots = V_p = V$. Then for any linear transformation $T: V \to W$, we have

$$T^{\otimes p}: V \otimes \cdots \otimes V \to W \otimes \cdots \otimes W$$

We use the short-hand notation $V^{\otimes p}$ to denote $\underbrace{V \otimes \cdots \otimes V}_{p \text{ terms in total}}$

Final Exam Ends Here.

14.1.2. Exterior Power

Definition 14.2 A *p*-linear map $\phi: V \times \cdots \times V \to W$ is called **alternating** if

 $\phi(v_1,\ldots,v_i,\ldots,v_j,\ldots,v_p)=\mathbf{0}_W$, provided that there exists some $v_i=v_j$ for $i\neq j$.

Also, we say ϕ is p-alternating

■ Example 14.1 1. The cross product mapping

$$\phi: \quad \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$
with $(\mathbf{v}, \mathbf{w}) \mapsto \mathbf{v} \times \mathbf{w}$

is alternating:

- ullet ϕ is bilinear
- 2. The determinant mapping

$$\begin{array}{ll} \phi: & \underbrace{\mathbb{F}^n \times \cdots \times \mathbb{F}^n}_{n \text{ terms in total}} \to \mathbb{F} \\ & \text{with} & (\boldsymbol{v}_1, \dots, \boldsymbol{v}_n) \mapsto \det([\boldsymbol{v}_1, \boldsymbol{v}_2, \cdots, \boldsymbol{v}_n]) \end{array}$$

is alternating:

- ϕ is n-linear by MAT2040 knowledge
- ullet ϕ is alternating by MAT2040 knowledge

Theorem 14.2 — Universal Property for exterior power. Let $Obj := \{\phi : \underbrace{V \times \cdots V}_{p \text{ terms}} \to W \mid \phi \text{ is } p\text{-alternating map} \}$. Then there exists $\{\Lambda : V \times \cdots \times V \to E\} \in Obj$ satisfying the following:

• For all $\phi: V \times \cdots \times V \to W \in Obj$, there exists unique linear transformation $\bar{\phi}: E \to W$ satisfying

In other words, $\phi = \bar{\phi} \circ \Lambda$.