13.4. Wednesday for MAT3040

13.4.1. Tensor Product for Linear Transformations

Proposition 13.3  Suppose that7T:V — V" and S: W — W’ are linear transformations,

then there exists an unique linear transformation

T®S: VoW -V W

satisfying (T®S)(v@w)=T(1)® S(w)
Proof. We construct the mapping

TxS: VXWoSsV W

with (T xS)(v,w)=T(v)® S(w)
This mapping is indeed bilinear: for instance, we can show that

(T x S)(avy + bvy,w) = a(T x S)(vi,w) + b(T x S)(vo,w)

Therefore, T x S € Obj. Since the tensor product satisfies the universal property, we

imply there exists an unique linear transformation

Tes VoW -V eWw

satisfying (T®S)(v@w)=T(1)® S(w)

Notation Warning. Does the notion 7' ® S really form a tensor product, i.e., do we

obtain the addictive rules for tensor product such as

(a1 + b)) ®@S=a(l1 ®S)+ b(Tr ® 5)?
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» Example 13.2 Let V=V’ =TF? and W = W’ =IF3. Define the matrix-multiply mappings:

S wW—-Ww
T: VoV
with w— Bw
with v i— Av

p q r
a b
A= B=|s ¢ u
c d
vV w X

How does T® S: V@ W — V@ W look like?
e Suppose {e1,e2},{f1, f2, f3} are usual basis of V,W, respectively. Then the basis of
V ® W is given by:

C= {81 ®fl/el ®f2181 ®f3162®f1162®f2182®ﬁ3}'

e As a result, we can compute (T ® S)(e; ® f;) fori=1,2 and j =1,2,3. For instance,

(T®S)e1®e1)=T(e1) ® S(e1)
= (ae1 + cer) @ (pe1 + sex + ves)

=(ap)e1 ® e1 + (as)e1 @ ex + (av)eyr @ e3 + (cp)ex ® e1 + (cs)ex ® ex + (cv)ex @ e3

e Therefore, we obtain a matrix representation for the linear transformation (7' ® S):

We want a matrix representation for (T ® §):

aB bB
(T®S)c,c= ,

cB dB

which is a large matrix formed by taking all possible products between the elements of
A and those of B. This operation is called the Kronecker Tensor Product, see the

command kron in MATLAB for detail.
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Proposition 13.4  More generally, given the linear operator 7:V -V and S: W - W,

let A={vi,...,vn},B ={w1,...,wn} be a basis of V,W respectively, with

(T a,a = (aij) (Sg,g)=(b;j):=B

As aresult, (T ® S)c,c =A®B, where C = {vi ®wy,...,v, ® Wy}, and A ® B denotes the

Kronecker tensor product, defined as the matrix

alllB al,nB

anaB - aynB

Proof. Following the similar procedure as in Example (13.2) and applying the relation

(T@S)(vi®w;)=T(;)®S(w;)

n m
= (Z akivk) ® (Z bngg)
k=1 =1

n m

= (akibej)vie ® we
k=1 (=1

Proposition 13.5 The operation T ® S satisfies all the properties of tensor product. For

example,

(a1 + b)) @ S=a(l1 ®S)+b(Tr ® S)

T®(cS1+dS)=c(T®S8)+dT®S52)
Therefore, the usage of the notion “®” is justified for the definition of T ® S.
Proof using matrix multiplication. For instance, consider the operation (T +7") ® S, with

(M a,a = (aij), (T")a,a = (cij),(S)s,8 = B.
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We compute its matrix representation directly:

(T+T)®S)cc=T+T)a,a®(5)s,s
=D aa+T)ax®(S)s,3

=(Ta,a®S)g,s+ T )axn®(S)s,s

where the last equality is by the addictive rule for kronecker product for matrices.

Therefore,

((T+T,)®S)C,C:(T®S)C,C+(T,®S)C,C = T+THeS=T®S+T'®S

Proof using basis of T ® S. Another way of the proof is by computing

(T+T")® S)(vi @ w)),

where {v;®w; [1<i<n,1<j<m}formsabasisof (T+7')®S:

(T + T’) ®S)(vi ® Wj) =(T+ T’)(Vi) ® S(Wj)
=(T(vi) +T'(vi)) ® S(w;)
=T(v;)® S(WJ') + T'(v,-) ® S(Wj)

=(T®8)vi®w;)+(T'®S)(vi®w,))

Since (T +T’) ® S)(v; ® w;) coincides with (T ® S + T’ ® S)(v; ® w;) for all basis vectors
vi ® wj € C, we imply

T+TH®S=T®S+T'®S
|

Proposition 13.6  Let A,C be linear operators from V to V, and B, D be linear operators
from W to W, then
(A®B)o(C®D)=(AC)®(BD)
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Proposition 13.7  Define linear operators A: V — V and B: W — W with dim(V), dim(W) <
oo. Then
det(A ® B) = (det(A))T™W)(det(B))dmV)

Corollary 13.3 There exists a linear transformation

®: Hom(V,V)® Hom(W,W) > Hom(V® W,V @ W)

with A B~ A®B

where the input of @ is the tensor product of linear transformations, and the output is the

linear transformation.
Proof. Construct the mapping
@ :Hom(V,V) x Hom(W,W) -» Hom(V @ W,V @ W)
with ®(A,B)=A®B

The @ is indeed bilinear: for instance,

O(pA +qC,B) = (pA+qC)® B
=p(A®B)+ q(C ® B)

=pP(A,B) + q®(C, B)

This corollary follows from the universal property of tensor product. u

Rr) If assuming that dim(V),dim(W) < co, we imply

dim(Input space of ®) = dim(Hom(V, V)) dim(Hom(W, W))
= [dim(V) dim(V)] - [dim(W) dim(W)] = [dim(V) dim(W)]?
= [dim(V ® W)]?
= dim(Hom(V @ W,V ® W))
= dim(Output space of @)
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Therefore, is @ is an isomorphism? If so, then every linear operator & : V@ W —

V ® W can be expressed as

a=A1®B1+:--+ AL Q By

where A;:V—Vand B; : W — W.
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