
13.4. Wednesday for MAT3040

13.4.1. Tensor Product for Linear Transformations
Proposition 13.3 Suppose that T : V ! V 0 and S : W ! W 0 are linear transformations,

then there exists an unique linear transformation

T ⌦ S : V ⌦ W ! V 0 ⌦ W 0

satisfying (T ⌦ S)(v ⌦ w) = T(v) ⌦ S(w)

Proof. We construct the mapping

T ⇥ S : V ⇥W ! V 0 ⌦ W 0

with (T ⇥ S)(v,w) = T(v) ⌦ S(w)

This mapping is indeed bilinear: for instance, we can show that

(T ⇥ S)(av1 + bv2,w) = a(T ⇥ S)(v1,w) + b(T ⇥ S)(v2,w)

Therefore, T ⇥ S 2 Obj. Since the tensor product satisfies the universal property, we

imply there exists an unique linear transformation

T ⌦ S V ⌦ W ! V 0 ⌦ W 0

satisfying (T ⌦ S)(v ⌦ w) = T(v) ⌦ S(w)

⌅

Notation Warning. Does the notion T ⌦ S really form a tensor product, i.e., do we

obtain the addictive rules for tensor product such as

(aT1 + bT2) ⌦ S = a(T1 ⌦ S) + b(T2 ⌦ S)?
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⌅ Example 13.2 Let V =V 0 = F
2

and W =W 0 = F
3
. Define the matrix-multiply mappings:

8>>>>>>>>><
>>>>>>>>>:

T : V ! V

with vvv 7! AAAvvv

AAA =
©≠≠
´
a b

c d

™ÆÆ
¨

8>>>>>>>>>>>><
>>>>>>>>>>>>:

S : W ! W

with www 7! BBBwww

BBB =

©≠≠≠≠≠
´

p q r

s t u

v w x

™ÆÆÆÆÆ
¨

How does T ⌦ S : V ⌦ W ! V ⌦ W look like?

• Suppose {e1, e2}, { f1, f2, f3} are usual basis of V ,W , respectively. Then the basis of

V ⌦ W is given by:

C = {e1 ⌦ f1, e1 ⌦ f2, e1 ⌦ f3, e2 ⌦ f1, e2 ⌦ f2, e2 ⌦ f3}.

• As a result, we can compute (T ⌦ S)(ei ⌦ fj) for i = 1,2 and j = 1,2,3. For instance,

(T ⌦ S)(e1 ⌦ e1) = T(e1) ⌦ S(e1)

= (ae1 + ce2) ⌦ (pe1 + se2 + ve3)

= (ap)e1 ⌦ e1 + (as)e1 ⌦ e2 + (av)e1 ⌦ e3 + (cp)e2 ⌦ e1 + (cs)e2 ⌦ e2 + (cv)e2 ⌦ e3

• Therefore, we obtain a matrix representation for the linear transformation (T ⌦ S):

We want a matrix representation for (T ⌦ S):

(T ⌦ S)C,C =
©≠≠
´
aB bB

cB dB

™ÆÆ
¨

,

which is a large matrix formed by taking all possible products between the elements of

AAA and those of BBB. This operation is called the Kronecker Tensor Product, see the

command kron in MATLAB for detail.

⌅
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Proposition 13.4 More generally, given the linear operator T : V ! V and S : W ! W ,

let A = {v1, . . . ,vn},B = {w1, . . . ,wm} be a basis of V ,W respectively, with

(T)A,A = (ai j) (SB,B) = (bi j) := B

As a result, (T ⌦ S)C,C = A ⌦ B, where C = {v1 ⌦ w1, . . . ,vn ⌦ wm}, and A ⌦ B denotes the

Kronecker tensor product, defined as the matrix

©≠≠≠≠≠
´

a1,1B · · · a1,nB
... . . . ...

an,1B · · · an,nB

™ÆÆÆÆÆ
¨

.

Proof. Following the similar procedure as in Example (13.2) and applying the relation

(T ⌦ S)(vi ⌦ wj) = T(vi) ⌦ S(wj)

=

 
n’

k=1

akivk

!
⌦

 
m’
`=1

b` jw`

!

=

n’
k=1

m’
`=1

(akib` j)vk ⌦ w`

⌅

Proposition 13.5 The operation T ⌦ S satisfies all the properties of tensor product. For

example,

(aT1 + bT2) ⌦ S = a(T1 ⌦ S) + b(T2 ⌦ S)

T ⌦ (cS1 + dS2) = c(T ⌦ S1) + d(T ⌦ S2)

Therefore, the usage of the notion “⌦” is justified for the definition of T ⌦ S.

Proof using matrix multiplication. For instance, consider the operation (T +T 0) ⌦ S, with

(T)A,A = (ai j), (T 0)A,A = (ci j), (S)B,B = B.
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We compute its matrix representation directly:

((T +T 0) ⌦ S)C,C = (T +T 0)A,A ⌦ (S)B,B

= [(T)A,A + (T 0)A,A] ⌦ (S)B,B

= (T)A,A ⌦ (S)B,B + (T 0)A,A ⌦ (S)B,B

where the last equality is by the addictive rule for kronecker product for matrices.

Therefore,

((T +T 0) ⌦ S)C,C = (T ⌦ S)C,C + (T 0 ⌦ S)C,C =) (T +T 0) ⌦ S = T ⌦ S +T 0 ⌦ S

⌅

Proof using basis of T ⌦ S. Another way of the proof is by computing

((T +T 0) ⌦ S)(vi ⌦ wj),

where {vi ⌦ wj | 1  i  n,1  j  m} forms a basis of (T +T 0) ⌦ S:

((T +T 0) ⌦ S)(vi ⌦ wj) = (T +T 0)(vi) ⌦ S(wj)

= (T(vi) +T 0(vi)) ⌦ S(wj)

= T(vi) ⌦ S(wj) +T 0(vi) ⌦ S(wj)

= (T ⌦ S)(vi ⌦ wj) + (T 0 ⌦ S)(vi ⌦ wj)

Since ((T +T 0) ⌦ S)(vi ⌦ wj) coincides with (T ⌦ S +T 0 ⌦ S)(vi ⌦ wj) for all basis vectors

vi ⌦ wj 2 C, we imply

(T +T 0) ⌦ S = T ⌦ S +T 0 ⌦ S

⌅

Proposition 13.6 Let A,C be linear operators from V to V , and B, D be linear operators

from W to W , then

(A ⌦ B) � (C ⌦ D) = (AC) ⌦ (BD)
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Proposition 13.7 Define linear operators A : V !V and B : W !W with dim(V),dim(W)<

1. Then

det(A ⌦ B) = (det(A))dim(W )(det(B))dim(V )

Corollary 13.3 There exists a linear transformation

� : Hom(V ,V) ⌦ Hom(W ,W)! Hom(V ⌦ W ,V ⌦ W)

with A ⌦ B 7! A ⌦ B

where the input of � is the tensor product of linear transformations, and the output is the

linear transformation.

Proof. Construct the mapping

� : Hom(V ,V) ⇥ Hom(W ,W)! Hom(V ⌦ W ,V ⌦ W)

with �(A, B) = A ⌦ B

The � is indeed bilinear: for instance,

�(pA+ qC, B) = (pA+ qC) ⌦ B

= p(A ⌦ B) + q(C ⌦ B)

= p�(A, B) + q�(C, B)

This corollary follows from the universal property of tensor product. ⌅

R If assuming that dim(V),dim(W) <1, we imply

dim(Input space of �) = dim(Hom(V ,V))dim(Hom(W ,W))

= [dim(V)dim(V)] · [dim(W)dim(W)] = [dim(V)dim(W)]2

= [dim(V ⌦ W)]2

= dim(Hom(V ⌦ W ,V ⌦ W))

= dim(Output space of �)
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Therefore, is � is an isomorphism? If so, then every linear operator ↵ : V ⌦W !

V ⌦ W can be expressed as

↵ = A1 ⌦ B1 + · · · + Ak ⌦ Bk

where Ai : V ! V and Bj : W ! W .

404


	Acknowledgments
	Notations
	Wednesday for MAT3040
	Tensor Product for Linear Transformations



