## **Chapter 13**

### Week13

# 13.1. Monday for MAT3040

#### Reviewing.

1. Define  $S = \{(v, w) \mid v \in V, w \in W\}$  and  $\mathfrak{X} = \operatorname{span}(S)$ . In  $\mathfrak{X}$ , there are no relations between distinct elements of S, e.g.,

$$2(v,0) + 3(0,w) \neq 1(2v,3w)$$

General element in  $\mathfrak{X}$ :

$$a_1(\mathbf{v}_1,\mathbf{w}_1) + \cdots + a_n(\mathbf{v}_n,\mathbf{w}_n),$$

where  $(\mathbf{v}_i, \mathbf{w}_i)$  are distinct.

2. Define the space  $V \otimes W = \mathfrak{X}/y$ , with

$$\mathbf{v} \otimes \mathbf{w} = 1(\mathbf{v}, \mathbf{w}) + y \in V \otimes W.$$

General element in  $\mathfrak{X}/y := V \otimes W$ :

$$a_1(\mathbf{v}_1, \mathbf{w}_1) + \dots + a_n(\mathbf{v}_n, \mathbf{w}_n) + y = a_1((\mathbf{v}_1, \mathbf{w}_1) + y) + \dots + a_n((\mathbf{v}_n, \mathbf{w}_n) + y)$$
$$= a_1(\mathbf{v}_1 \otimes \mathbf{w}_1) + \dots + a_n(\mathbf{v}_n \otimes \mathbf{w}_n)$$
$$= (a_1\mathbf{v}_1) \otimes \mathbf{w}_1 + \dots + (a_n\mathbf{v}_n) \otimes \mathbf{w}_n$$

Therefore, a general element in  $V \otimes W$  is of the form

$$\mathbf{v}_1' \otimes \mathbf{w}_1 + \dots + \mathbf{v}_n' \otimes \mathbf{w}_n, \ \mathbf{v}_i' \in V, \mathbf{w}_i \in W.$$
 (13.1)

Note that  $V \otimes W$  is different from  $V \times W$ , where all elements in  $V \times W$  can be expressed as (v, w).

3. The tensor product mapping

*i*: 
$$V \times W \rightarrow V \otimes W$$
 with  $(v, w) \mapsto v \otimes w$ 

satisfies the universal property.

Here we present an example for computing tensor product by making use of the rules below:

$$(\mathbf{v}_1 + \mathbf{v}_2) \otimes \mathbf{w} = \mathbf{v}_1 \otimes \mathbf{w} + \mathbf{v}_2 \otimes \mathbf{w}$$

$$\mathbf{v} \otimes (\mathbf{w}_1 + \mathbf{w}_2) = (\mathbf{v} \otimes \mathbf{w}_1) + (\mathbf{v} \otimes \mathbf{w}_2)$$

$$(k\mathbf{v}) \otimes \mathbf{w} = k(\mathbf{v} \otimes \mathbf{w})$$

$$\mathbf{v} \otimes (k\mathbf{w}) = k(\mathbf{v} \otimes \mathbf{w})$$

■ Example 13.1 Let  $V = W = \mathbb{R}^2$ , with

$$\boldsymbol{e}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad \boldsymbol{e}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}.$$

Here we have

$$\begin{pmatrix} 3 \\ 1 \end{pmatrix} \otimes \begin{pmatrix} -4 \\ 2 \end{pmatrix} = (3\mathbf{e}_1 + 2\mathbf{e}_2) \otimes (-4\mathbf{e}_1 + 2\mathbf{e}_2) 
= (3\mathbf{e}_1) \otimes (-4\mathbf{e}_1 + 2\mathbf{e}_2) + (\mathbf{e}_2) \otimes (-4\mathbf{e}_1 + 2\mathbf{e}_2) 
= (3\mathbf{e}_1) \otimes (-4\mathbf{e}_1) + (3\mathbf{e}_1) \otimes (2\mathbf{e}_2) + (\mathbf{e}_2) \otimes (-4\mathbf{e}_1) + \mathbf{e}_2 \otimes (2\mathbf{e}_2) 
= -12(\mathbf{e}_1 \otimes \mathbf{e}_1) + 6(\mathbf{e}_1 \otimes \mathbf{e}_2) - 4(\mathbf{e}_2 \otimes \mathbf{e}_1) + 2(\mathbf{e}_2 \otimes \mathbf{e}_2)$$

Exercise: Check that  $\mathbf{e}_1 \otimes \mathbf{e}_2 + \mathbf{e}_2 \otimes \mathbf{e}_1$  cannot be re-written as

$$(ae_1 + be_2) \otimes (ce_1 + de_2), a, b, c, d \in \mathbb{R}.$$

#### 13.1.1. Basis of $V \otimes W$

**Motivation**. Given that  $\{v_1, ..., v_n\}$  is a basis of V, and  $\{w_1, ..., w_m\}$  a basis of W, we aim to find a basis of  $V \otimes W$  using  $v_i$ 's and  $w_i$ 's.

**Proposition 13.1** The set  $\{v_i \otimes w_j \mid 1 \le i \le n, 1 \le j \le m\}$  spans the tensor product space  $V \otimes W$ .

*Proof.* Consider any  $\mathbf{v} \in V$  and  $\mathbf{w} \in W$ , and we want to express  $\mathbf{v} \otimes \mathbf{w}$  in terms of  $\mathbf{v}_i, \mathbf{w}_j$ . Suppose that  $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n$  and  $\mathbf{w} = \beta_1 \mathbf{w}_1 + \dots + \beta_m \mathbf{w}_m$ .

Substituting  $\mathbf{v} = \alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$  into the expression  $\mathbf{v} \otimes \mathbf{w}$ , we imply

$$\mathbf{v} \otimes \mathbf{w} = (\alpha_1 \mathbf{v}_1 + \dots + \alpha_n \mathbf{v}_n) \otimes \mathbf{w}$$
  
=  $(\alpha_1 \mathbf{v}_1) \otimes \mathbf{w}_1 + \dots + (\alpha_n \mathbf{v}_n) \otimes \mathbf{w}_n$   
=  $\alpha_1 (\mathbf{v}_1 \otimes \mathbf{w}) + \dots + \alpha_n (\mathbf{v}_n \otimes \mathbf{w})$ 

For each  $\mathbf{v}_i \otimes \mathbf{w}$ , i = 1, ..., n, similarly,

$$\mathbf{v}_i \otimes \mathbf{w} = \beta_1(\mathbf{v}_i \otimes \mathbf{w}_1) + \cdots + \beta_m(\mathbf{v}_i \otimes \mathbf{w}_m).$$

Therefore,

$$\mathbf{v} \otimes \mathbf{w} = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_{i} \beta_{j} (\mathbf{v}_{i} \otimes \mathbf{w}_{j})$$
(13.2)

By (13.1), any vector in  $V \otimes W$  is of the form

$$\mathbf{v}^{(1)} \otimes \mathbf{w}^{(1)} + \cdots + \mathbf{v}^{(\ell)} \otimes \mathbf{w}^{(\ell)}$$

By (13.2), each  $\mathbf{v}^{(k)} \otimes \mathbf{w}^{(k)}$ ,  $k = 1, ..., \ell$ , can be expressed as

$$\mathbf{v}^{(k)} \otimes \mathbf{w}^{(k)} = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i^{(k)} \beta_j^{(k)} (\mathbf{v}_i \otimes \mathbf{w}_j)$$

Therefore,

$$\mathbf{v}^{(1)} \otimes \mathbf{w}^{(1)} + \dots + \mathbf{v}^{(\ell)} \otimes \mathbf{w}^{(\ell)} = \sum_{k=1}^{\ell} \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i^{(k)} \beta_j^{(k)} (\mathbf{v}_i \otimes \mathbf{w}_j)$$

In other words,  $\{v_i \otimes w_j \mid 1 \le i \le n, 1 \le j \le m\}$  spans  $V \otimes W$ .

**Theorem 13.1** A basis of  $V \otimes W$  is  $\{v_i \otimes w_j \mid 1 \le i \le n, 1 \le j \le m\}$ 

*Proof.* By proposition (13.1), it suffices to show that the set  $\{v_i \otimes w_j \mid 1 \le i \le n, 1 \le j \le m\}$  is linear independent. Suppose that

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij}(\mathbf{v}_i \otimes \mathbf{w}_j) = \mathbf{0}$$
 (13.3)

Suppose that  $\{\phi_1, ..., \phi_n\}$  is a dual basis of  $V^*$ , and  $\{\psi_1, ..., \psi_m\}$  is a dual basis of  $W^*$ . Construct the mapping

$$\pi_{p,q}: \quad V\times W \to \mathbb{F}$$
 with 
$$\pi_{p,q} = \phi_p(\mathbf{v})\psi_q(\mathbf{w})$$

• The mapping  $\pi_{p,q}$  is actually bilinear: for instance,

$$\begin{split} \pi_{p,q}(a\mathbf{v}_1 + b\mathbf{v}_2, \mathbf{w}) &= \phi_p(a\mathbf{v}_1 + b\mathbf{v}_2)\psi_q(\mathbf{w}) \\ &= (a\phi_p(\mathbf{v}_1) + b\phi_p(\mathbf{v}_2))\psi_q(\mathbf{w}) \\ &= a\phi_p(\mathbf{v}_1)\psi_q(\mathbf{w}) + b\phi_p(\mathbf{v}_2)\psi_q(\mathbf{w}) \\ &= a\pi_{p,q}(\mathbf{v}_1, \mathbf{w}) + b\pi_{p,q}(\mathbf{v}_2, \mathbf{w}). \end{split}$$

Following the similar ideas, we can check that  $\pi_{p,q}(\mathbf{v}, a\mathbf{w}_1 + b\mathbf{w}_2) = a\pi_{p,q}(\mathbf{v}, \mathbf{w}_1) + b\pi_{p,q}(\mathbf{v}, \mathbf{w}_2)$ .

• Therefore,  $\pi_{p,q} \in \text{Obj}$ . By the universal property of the tensor product,  $\pi_{p,q}$  induces the unique linear transformation

$$\prod_{p,q}: V \otimes W \to \mathbb{F}$$
 with 
$$\prod_{p,q} (\mathbf{v} \otimes \mathbf{w}) = \pi_{p,q}(\mathbf{v}, \mathbf{w})$$

In other words,  $\prod_{p,q} (\mathbf{v} \otimes \mathbf{w}) = \phi_p(\mathbf{v}) \psi_q(\mathbf{w})$ .

• Applying the mapping  $\Pi_{p,q}$  on both sides of (13.3), we imply

$$\Pi_{p,q}\left(\sum_{i=1}^{n}\sum_{j=1}^{n}\alpha_{ij}(\mathbf{v}_{i}\otimes\mathbf{w}_{j})\right)=\Pi_{p,q}(\mathbf{0})$$

Or equivalently,

$$\sum_{i=1}^{n} \sum_{i=1}^{n} \alpha_{ij} \Pi_{p,q}(\mathbf{v}_i \otimes \mathbf{w}_j) = 0,$$

i.e.,

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{ij} \phi_p(\mathbf{v}_i) \psi_q(\mathbf{w}_j) = \alpha_{p,q} = 0$$

Following this procedure, we can argue that  $\alpha_{ij} = 0, \forall i, \forall j$ .

**Corollary 13.1** If  $\dim(V)$ ,  $\dim(W) < \infty$ , then  $\dim(V \otimes W) = \dim(V)\dim(W)$ 

*Proof.* Check dimension of the basis of  $V \otimes W$ .

The universal property can be very helpful. In particular, given a bilinear mapping, say  $\phi: V \times W \to U$ , we imply  $\phi \in \text{Obj}$ . By theorem (12.3), since i satisfies the universal property of tensor product, we can induce an unique linear transformation  $\psi: V \otimes W \to U$ .

Let's try another example for making use of the universal property:

**Theorem 13.2** For finite dimension U and V,

$$V \otimes U \cong U \otimes V$$

Proof. Construct the mapping

$$\phi: V \times U \rightarrow U \otimes V$$
with  $\phi(\mathbf{v}, \mathbf{u}) = \mathbf{u} \otimes \mathbf{v}$ 

Indeed,  $\phi$  is bilinear: for instance,

$$\phi(a\mathbf{v}_1 + b\mathbf{v}_2, \mathbf{u}) = u \otimes (a\mathbf{v}_1 + b\mathbf{v}_2)$$

$$= a(\mathbf{u} \otimes \mathbf{v}_1) + b(u \otimes \mathbf{v}_2)$$

$$= a\phi(\mathbf{v}_1, \mathbf{u}) + b\phi(\mathbf{v}_2, \mathbf{u})$$

Therefore,  $\phi \in \text{Obj}$ . By the universal property of tensor product, we induce an unique linear transformation

$$\Phi: V \otimes U \rightarrow U \otimes V$$
with  $\Phi(\mathbf{v} \otimes \mathbf{u}) = \mathbf{u} \otimes \mathbf{v}$ 

Similarly, we may induce the linear transformation

$$\Psi: \quad U \otimes V \to V \otimes U$$
with  $\Psi(\mathbf{u} \otimes \mathbf{v}) = \mathbf{v} \otimes \mathbf{u}$ 

$$390$$

Given any  $\sum_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \in U \otimes V$ , observe that

$$(\Phi \circ \Psi) \left( \sum_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i} \right) = \Phi \left( \sum_{i} \Psi(\mathbf{u}_{i} \otimes \mathbf{v}_{i}) \right)$$

$$= \Phi \left( \sum_{i} \mathbf{v}_{i} \otimes \mathbf{u}_{i} \right)$$

$$= \sum_{i} \Phi(\mathbf{v}_{i} \otimes \mathbf{u}_{i})$$

$$= \sum_{i} \mathbf{u}_{i} \otimes \mathbf{v}_{i}$$

Therefore,  $\Phi \circ \Psi = \mathrm{id}_{U \otimes V}$ . Similarly,  $\Psi \circ \Phi = \mathrm{id}_{V \otimes U}$ . Therefore,

$$U \otimes V \cong V \otimes U$$
.

### 13.1.2. Tensor Product of Linear Transformation

**Motivation**. Given two linear transformations  $T: V \to V'$  and  $S: W \to W'$ , we want to construct the tensor product

$$T \otimes S : V \otimes W \to V' \otimes W'$$

Question: is  $T \otimes S$  a linear transformation?

Answer: Yes. Universal property plays a role!