Chapter 13

Week13

13.1. Monday for MAT 3040

Reviewing.

1. Define S = {(v,w) |v e V,w € W} and X = span(S). In X, there are no relations

between distinct elements of S, e.g.,
2(v,0)+3(0,w) = 1(2v,3w)

General element in X:
al(Vl,W]) +-t Cln(Vn,Wn),
where (v;, w;) are distinct.
2. Define the space V@ W = X/y, with
vaw=1(v,w)+yeVoW.

General element in X/y:=V@W:

ar(vi,w1) + -+ an(vp,wp) +y =ar((vi,w1) + y) + - + an(v, wp) + y)
=ai(vi®@wi)+ - +a,(v, ®w,)

= (alvl) Qwy+--- + (anvn) Wy,
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Therefore, a general element in V ® W is of the form

VIOWI+ 4V, @W,, vieV,w,eW. (13.1)

Note that V@ W is different from V x W, where all elements in V x W can be
expressed as (v, w).

3. The tensor product mapping

i: VXW—-sVeWw

with (vyw)—vew

satisfies the universal property.

Here we present an example for computing tensor product by making use of the

rules below:

vi+v2)@w=viQw+v,®w
v (wi+wy)=(vewi)+(vewy)
(kv)ow=k(vew)

v (kw)=k(vew)

= Example 13.1 Let V =W = R?, with

e; = , €=
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Here we have

® = (3e1 +2e) ® (—4eq + 2ey)
1 2

= (3e1) ® (—4e; +2er) + (e2) ® (—4eq + 2e))
= (3e1) ® (—4e1) + (3e1) ® (2e2) + (e2) ® (—4e1) + €2 ® (2€2)

=-12(e1®e1)+6(e1®er)—4(ex ®eq) +2(er®ep)

Exercise: Check that e; ® e, + ) ® e1 cannot be re-written as

(aeq1 + bey) ® (ce1 +dey), a,b,c,deR.

13.1.1. Basisof VW

Motivation. Given that {vq,...,v,} is a basis of V, and {w,...,w,,} a basis of W, we

aim to find a basis of V ® W using v;’s and w;’s.

Proposition 13.1  The set {v;®w; |1 <i <n,1< j <m} spans the tensor product space

VeWw.

Proof. Consider any v € V and w € W, and we want to express v ® w in terms of v;, w;.
Suppose that v=a1v1 + -+ auvy, and w = Siw1 + -+ + BWy.

Substituting v = @1vq + - + @, v, into the expression v ® w, we imply

vaw=(a1v1+ - +auv,) ®w
=(a1v1) @ w1 + -+ + (V) ® Wy

=a1(vi®w)+---+a,(v, ®w)
For eachv;®w, i=1,...,n, similarly,

View=pB1(vi®wy)+ -+ (Vi ®wy).
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Therefore,

VW :Zn:ia[ﬁj(V,‘@Wj) (13.2)

i=1 j=1

By (13.1), any vector in V ® W is of the form
v @wh 4. 49O g w®

By (13.2), each v @w® k=1,...,¢ can be expressed as

n m
v @ wh = Z Z Cl’;k)ﬁ;k)(vi ®w;)

i=1 j=1
Therefore,
{ n m
v @wh 4. 4O g = Z Z a,(k)ﬁj(-k)(vi ®w))
k=1i=1 j=1
In other words, {v;®w;|1<i<n1<;j<m}spansVeoW. [

Theorem 13.1 Abasisof VeWis {v;®w;|1<i<n1<j<m}

Proof. By proposition (13.1), it suffices to show that the set {v;®@w; |1 <i<n,1<j<m}

is linear independent. Suppose that

anzn:aij(vi@)wj):o (133)

i=1 j=1

Suppose that {¢1,...,¢,} is a dual basis of V*, and {y1,...,¢¥:} is a dual basis of W*.

Construct the mapping
Tpg: VXW—-TF

with 7, 4 = ¢,(V)Yy(w)
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e The mapping r, , is actually bilinear: for instance,

Ty, q(avy +bva,w) = ¢p(avy + bva)y,(w)
= (agp(v1) + bdp(v2))ry(w)
= ag,(v1)g(w) + bgp(v2)g(w)

=anp4(v1,w) + brp (v, w).

Following the similar ideas, we can check that 7, ,(v,aw1 + bw>) = anp, (v, w1) +

brtp 4 (v, w2).

e Therefore, n,, , € Obj. By the universal property of the tensor product, r,, ; induces

the unique linear transformation

Hp,q: VoW —F

with  [[, ,(ve®w)=m,,(v,w)

In other words, [],, ,(v ® w) = ¢, (v)iry(w).

e Applying the mapping I1,, , on both sides of (13.3), we imply

Iy,q (Zn: zn: @;j(v; ® W.i)) =11, ,4(0)

i=1 j=1

Or equivalently,

n o n
a’inp,q(Vi ® Wj) =0,
1 =1

i
ie.,
n n

@ijpp(Vilg(Wj) =apq =0
i=1 =1

Following this procedure, we can argue that a;; =0,Vi,V,.

I Corollary 13.1  If dim(V),dim(W) < oo, then dim(V ® W) = dim(V) dim(W)

Proof. Check dimension of the basis of V@ W. |
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The universal property can be very helpful. In particular, given a bilinear
mapping, say ¢ : VX W — U, we imply ¢ € Obj. By theorem (12.3), since i
satisfies the universal property of tensor product, we can induce an unique

linear transformation ¢ : V@ W — U.

Let’s try another example for making use of the universal property:

Theorem 13.2  For finite dimension U and V,

VelU=U®V

Proof. Construct the mapping

o VxU—-UQ®V

with ¢(v,u)=u®v

Indeed, ¢ is bilinear: for instance,

¢(avi + bvo,u) = u ® (avy + bvy)
=a(u®vy)+bu®vy)

= a¢(V1,u) + b¢(V2,u)
Therefore, ¢ € Obj. By the universal property of tensor product, we induce an
unique linear transformation

D: VeU—-UV

with d(veu)=u®v
Similarly, we may induce the linear transformation

Y UV ->VeU
with Y(u®v)=veu
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Given any ) ;u; ® v; € U®V, observe that

(Do) =0

Zu,-@v,-

i

Z‘I’(ui ® Vi))
Z Vv, ® ul-)

=0

Therefore, ® o ¥ = idygy. Similarly, ¥ o ® =idygy. Therefore,

UeV=VeU.

13.1.2. Tensor Product of Linear Transformation

Motivation. Given two linear transformations 7:V — V'’ and §: W — W’, we want

to construct the tensor product
TRS: VoW -V oW

Question: is T ® S a linear transformation?

Answer: Yes. Universal property plays a role!
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