12.4. Wednesday for MAT3040

Reviewing. Bilinear map: $f: V \times W \rightarrow U$, e.g.,

$$f: \mathbb{R}^3 \times \mathbb{R}^3$$

with $f(u, v) = u \times v$

Note that f is usually not a linear transformation, e.g.,

$$f(3(v, w)) = f(3v, 3w) = (3v) \times (3w) = 9v \times w \neq 3f(v, w).$$

The vector space structure of $\mathbf{v} \times \mathbf{w}$ is not suited to study bilinear map, and the proper way is to study its induced linear transformation.

Definition 12.3 [Universal Property of Tensor Product] Let V,W be vector spaces. Consider the set

$$\mathsf{Obj} := \{ \phi : V \times W \to U \mid \phi \text{ is a bilinear map} \}$$

We say T, or $(i: V \times W \to T) \in \text{Obj}$ satisfies the **universal property** if for any $(\phi: V \times W \to T) \in \text{Obj}$, there exists an unique linear transformation $f_{\phi}: T \to U$ such that the diagram below commutes:

i.e.,
$$\phi = f_{\phi} \circ i$$
.

Therefore, rather than studying bilinear map ϕ , it is better to study the linear transformation f_{ϕ} instead.

Question: does *T* exist?

Definition 12.4 [Spanning Set] Let V, W be vector spaces. Let $S = \{(v, w) \mid v \in V, w \in W\}$, then we define

$$\mathfrak{X} = \operatorname{span}(S)$$
.

R

- 1. The spanning set \mathfrak{X} is not addictive, e.g., $\mathfrak{x}_1 = 3(0, \mathbf{w}) \in \mathfrak{X}$ and $\mathfrak{x}_2 = 1(0, \mathbf{w}) + 1(0, 2\mathbf{w}) \in \mathfrak{X}$, but $\mathfrak{x}_1 \neq \mathfrak{x}_2$.
- 2. Note that we assume no relations on the elements $(v, w) \in S$. More precisely, the set $S = \{(v, w) \mid v \in V, w \in W\}$ is linearly independent in \mathfrak{X} . For example, $(0, w) \perp (0, 2w)$.
- 3. The only legitimate relationship is

$$2(v_1, w_1) + 3(v_1, w_1) = 5(v, w),$$

which is not equal to (5v, 5w)

4. S is a basis of \mathfrak{X} , and therefore X is of uncountable dimension.

Definition 12.5 [Special subspace of \mathfrak{X}] Let $y \leq \mathfrak{X}$ be a vector subspace spanned by vectors of the form

$$\{1(v_1, v_2, w) - 1(v_1, w) - 1(v_2, w)\}, \text{ or } \{1(v, w_1 + w_2) - 1(v, w_1) - 1(v, w_2)\}$$

or

$$\{1(k\mathbf{v},\mathbf{w}) - k(\mathbf{v},\mathbf{w}) \mid k \in \mathbb{F}\}$$

or

$$\{1(\boldsymbol{v}, k\boldsymbol{w}) - k(\boldsymbol{v}, \boldsymbol{w}) \mid k \in \mathbb{F}\}\$$

Definition 12.6 [Tensor Product] We define the **tensor product** $V \otimes W$ by

$$V \otimes W = \mathcal{X}/y$$
.

Therefore, $\mathbf{v} \otimes \mathbf{w} = (\mathbf{v}, \mathbf{w}) + y \in \mathcal{X}/y$

1. As a result, the tensor product is finitely addictive:

$$(\mathbf{v}_{1} + \mathbf{v}_{2}) \otimes \mathbf{w} = (\mathbf{v}_{1} + \mathbf{v}_{2}, \mathbf{w}) + y$$

$$= (\mathbf{v}_{1} + \mathbf{v}_{2}, \mathbf{w}) - [(\mathbf{v}_{1} + \mathbf{v}_{2}, \mathbf{w}) - (\mathbf{v}_{1}, \mathbf{w}) - (\mathbf{v}_{2}, \mathbf{w})] + y$$

$$= 0(\mathbf{v}_{1} + \mathbf{v}_{2}, \mathbf{w}) + (\mathbf{v}_{1}, \mathbf{w}) + (\mathbf{v}_{2}, \mathbf{w}) + y$$

$$= [(\mathbf{v}_{1}, \mathbf{w}) + y] + [(\mathbf{v}_{2}, \mathbf{w}) + y]$$

$$= \mathbf{v}_{1} \otimes \mathbf{w} + \mathbf{v}_{2} \otimes \mathbf{w}$$

Similarly,

$$\mathbf{v} \otimes (\mathbf{w}_1 + \mathbf{w}_2) = (\mathbf{v} \otimes \mathbf{w}_1) + (\mathbf{v} \otimes \mathbf{w}_2)$$

$$(k\mathbf{v}) \otimes \mathbf{w} = k(\mathbf{v} \otimes \mathbf{w})$$

$$\mathbf{v} \otimes (k\mathbf{w}) = k(\mathbf{v} \otimes \mathbf{w})$$

- 2. The product space $V \times W$ is different from the tensor product space $V \otimes W$:
 - (a) $(\mathbf{v}, \mathbf{0}) \neq \mathbf{0}_{V \times W}$ in $V \times W$; but $\mathbf{v} \otimes 0 \in 0_{V \otimes W}$:

$$V \otimes 0 = V \otimes (0\mathbf{w})$$

= $0(V \otimes w)$
= $0_{V \otimes W}$

Moreover, f is bilinear implies $f(\mathbf{v}, 0) = \mathbf{0}$.

(b) $(v_1, w_1) + (v_2, w_2) = (v_1 + v_2, w_1 + w_2)$; but $v_1 \otimes w_1 + v_2 \otimes w_2$ cannot be simplified further, unless $v_1 = v_2$:

$$\mathbf{v} \otimes \mathbf{w}_1 + \mathbf{v} \otimes \mathbf{w}_2 = \mathbf{v} \otimes (\mathbf{w}_1 + \mathbf{w}_2)$$

Theorem 12.3 The bilinear map

$$i: V \times W \to V \otimes W \quad (i \in \text{Obj})$$

with $(v, w) \mapsto v \otimes w$

satisfies the universal property of tensor products.

■ Example 12.6 Consider a common bilinear map

$$\phi: \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3$$
with $(\mathbf{v}, \mathbf{w}) \mapsto \mathbf{v} \times \mathbf{w}$

By the universal property, there exists the linear transformation $f_{\phi}: \mathbb{R}^3 \otimes \mathbb{R}^3 \to \mathbb{R}^3$ such that the diagram below commutes:

•