
Chapter 12

Week12

12.1. Monday for MAT3040

12.1.1. Remarks on Normal Operator

Proposition 12.1 If T is normal, then

1. kT(vvv)k = kT 0(vvv)k for any vvv 2 V

2. (T � �I) is normal for any � 2 C

3. T(vvv) = �vvv if and only if T 0(vvv) = �̄vvv

4. If T(vvv) = �vvv and T(www) = µwww with � , µ, then hvvv,wwwi = 0.

Proof. (3) • For the forward direction, if (T � �I)vvv = 0, then by part (2), (T � �I) is

normal, which follows that

k(T � �I)0(vvv)k = 0 =) (T � �I)0(vvv) = 0 =) T 0vvv = �̄vvv.

• For the reverse direction, suppose that (T 0 � �̄I)vvv = 0. Since T is normal, we

imply T 0 is normal. Then by part (2), (T 0 � �̄I) is normal. By applying the

same trick,

(T 0 � �̄I)0vvv = 0 =) ((T 0)0 � �̄I)vvv = 0.

By hw4, (T 0)0 = T . Therefore, (T � �I)vvv = 0.

(4) Observe that

�hvvv,wwwi = h�̄vvv,wwwi
by (3)
====) �hvvv,wwwi = hT 0(vvv),wwwi = hvvv,T(www)i = hvvv, µwwwi = µhvvv,wwwi
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Since � , µ, we imply hvvv,wwwi = 0. The proof is complete.

⌅

Theorem 12.1 Let T be an operator on a finite dimensional (dim(V) = n) C-inner

product vector space V satisfying T 0T = TT 0. Then there is an orthonormal basis of

eigenvectors of V , i.e., an orthonormal basis of V such that any element from this

basis is an eigenvector of T .

Proof. Since XT (x) must have a root in C, there must exist an eigen-pair (vvv,�) of T .

• Construct U = span{vvv}, and it follows that

Tvvv = �vvv =) U is T-invariant.

T 0vvv = �̄vvv =) U is T ’-invariant.

• Moreover, we claim that U? is T and T 0 invariant: let www 2 U?, and for all uuu 2 U,

we have

huuu,T(www)i = hT 0(uuu),wwwi = h�̄uuu,wwwi = �huuu,wwwi = 0,

i.e., U? is T invariant.

huuu,T 0(www)i = hT(uuu),wwwi = h�uuu,wwwi = �̄huuu,wwwi = 0,

which implies U? is T 0 invariant.

• Therefore, we construct the operator T |U? : U? ! U?, and

TT 0 = T 0T =) (T |U?)(T 0 |U?) = (T 0 |U?)(T |U?),

i.e., (T |U?) is normal on U?. Moreover, dim(U?) = n � 1.

• Applying the same trick as in Theorem (??), we imply there exists an orthonormal
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basis {eee2, . . . , eeen} of eigenvectors of (T |U?). Then we can argue that

B = {vvv0 = vvv/kvvvk, eee2, . . . , eeek+1}

is a basis of orthonormal eigenvectors of V .

⌅

Corollary 12.1 [Spectral Theorem for Normal Operator] Let T : V ! V be a normal

operator on a C-inner product space with dim(V) < 1. Then there exists self-adjoint

operators P1, . . . , Pk such that

P2
i = Pi, PiPj = 0, i , j,

k’
i=1

Pi = I,

and T =
Õk

i=1 �iPi, where �i’s are the eigenvalues of T .

R These Pi’s are the orthogonal projections from V to the �i-eigenspace ker(T �

�i I) of T , denoted as

Pi =
÷

ker(T��i I )
(T), i = 1, . . . , k.

You should know how to compute Pi’s when T(vvv)= AAAvvv in the course MAT2040.

Proof. Since T has a basis of eigenvectors, by definition, T is diagonalizable. By propo-

sition (8.2),

mT (x) = (x � �1) · · · (x � �k),

where �i’s are distinct. By spectral decomposition corollary (??), it suffices to show Pi’s

are self-disjoint.

• Recall that Pi = ai(T)qi(T) := bmTm + · · · + b1T + b0T , i.e., a polynomial of T , and

therefore

P0
i = b̄m(T 0)m + · · · + b̄1(T 0) + b̄0I.
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We claim that Pi is normal: Since T 0T = TT 0, we imply

(T 0)pTq = Tq(T 0)p,8p, q 2 N

which follows that

PiP0
i = (bmTm + · · · + b0I)(b̄m(T 0)m + · · · + b̄1(T 0) + b̄0I)

=
’

1x,ym
bx b̄y(T)x(T 0)y

=
’

1x,ym
b̄ybx(T 0)y(T)x

= (b̄m(T 0)m + · · · + b̄1(T 0) + b̄0I)(bmTm + · · · + b0I)

= P0
i Pi

• In general, S is self-adjoint, which implies S is normal, but not vice versa. How-

ever, the converse holds if further all eigenvalues of S are real numbers:

By Theorem (12.1), we imply S is orthonormally diagonalizable, and its diagonal

representation is of the form

(S)B,B = diag(�1, . . . ,�k).

Note that B is also a basis for S0 and elements of B are eigenvalues of S0, by

part (3) in proposition (12.1). Therefore,

(S0)B,B = diag(�1, . . . ,�k).

Therefore, S = S0.

In particular, for S = Pi, we can easily show all eigenvalues of Pi are 0 or 1, which are

real. Therefore, Pi’s are self-adjoint. ⌅
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Corollary 12.2 Let T : V ! V be a linear operator on C-inner product space with

dim(V) <1. Then T is normal if and only if T 0 = f (T) for some polynomial f (x) 2 C[x].

Proof. • For the reverse direction, if T 0 = f (T), then T 0T = f (T)T = T f (T) = TT 0.

• For the forward direction, suppose that T is normal, then by corollary (12.1),

T =
k’
i=1

�iPi, Pi = fi(T), where Pi’s are self-adjoint,

which follows that

T 0 =

 
k’
i=1

�iPi

! 0
=

k’
i=1

�̄iP0
i =

k’
i=1

�̄iPi =

k’
i=1

�̄i fi(T)

⌅

R The normal operator is a generalization of Hermitian matrices, and it inherits

many nice properties of Hermitian.

12.1.2. Tensor Product

Motivation. Let U,V ,W be vector spaces. We want to study bilinear maps f : U ⇥W !

U, i.e.,

f (av1 + bv2,w) = a f (v1,w) + b f (v2,w)

f (v,cw1 + dw2) = c f (v,w1) + df (v,w2)

Unfortunately, bilinear form usually is not a linear transformation!

⌅ Example 12.1 • Let f : R
n ⇥ R

n ! R be with (u,v) 7! hu,vi.

• Let f : Mn⇥n(F) ⇥ Mn⇥n(F)! Mn⇥n(F) be with f (A, B) = AB.

• Let f : F[x] ⇥ F[x]! F be with f (p(x), q(x)) = p(1)q(2)
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• Let f : F[x] ⇥ F[x]! F[x] be with f (p(x), q(x)) = p(x)q(x).

⌅
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