Chapter 12

Week12

12.1. Monday for MAT3040

12.1.1. Remarks on Normal Operator

Proposition 12.1 If T is normal, then

1. ITW)| =IT'(v)|| for any v e V
2. (T — AI) is normal for any 1 € C
3. T(v) = Av if and only if T"(v) = Av

4. If T(v) = Av and T(w) = uw with A # u, then {(v,w) = 0.

Proof. (3) e For the forward direction, if (T — AI)v =0, then by part (2), (T — AI) is

normal, which follows that

(T =AW =0 = (T-A)(v)=0 = T'v=1v.

e For the reverse direction, suppose that (7’ — AI)v = 0. Since T is normal, we
imply T’ is normal. Then by part (2), (T’ — AI) is normal. By applying the
same trick,

(T' = Av=0 = ((T') - U)v =0.

By hw4, (T’)" =T. Therefore, (T — Al)v =0.

(4) Observe that

Av,w) ={1lv,w) —by;ﬂ> Av,w) =(T'(v),w) = (v,T(w)) = (v, uw) = u(v,w)

355



Since A # u, we imply (v,w) = 0. The proof is complete.

Theorem 12.1  Let T be an operator on a finite dimensional (dim(V) = n) C-inner
product vector space V satisfying T'T = TT’. Then there is an orthonormal basis of

eigenvectors of V, i.e., an orthonormal basis of V such that any element from this

basis is an eigenvector of 7.

Proof. Since Xr(x) must have a root in C, there must exist an eigen-pair (v,1) of T..

e Construct U = span{v}, and it follows that

Tv = Av — U is T-invariant.

T'v=1v = U is T’-invariant.

e Moreover, we claim that U* is T and T’ invariant: let w € U+, and for all u € U,
we have

(u, T(w)) =(T"(u),w) = (Au,w) = A(u,w) =0,

i.e., U+ is T invariant.

(u,T"(w)) = (T(u),w) = (du,w) = Au,w) =0,

which implies U +is 7’ invariant.

e Therefore, we construct the operator 7 |y.: U+ — U+, and

TT' =T'T = (T |y )T |p2) =T [y )T lu),

i.e., (T |yyv) is normal on U+. Moreover, dim(U+) =n - 1.

e Applying the same trick as in Theorem (??), we imply there exists an orthonormal
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basis {ey,...,e,} of eigenvectors of (T |y+). Then we can argue that
B={v' =v/||v|,e,..., ex:1}

is a basis of orthonormal eigenvectors of V.

Corollary 12.1  [Spectral Theorem for Normal Operator] Let 7:V — V be a normal
operator on a C-inner product space with dim(V) < co. Then there exists self-adjoint

operators Py, ..., P, such that

k
Pl-ZZPl', PinZO,i:ﬁj, Zpi:Ir
i=1

and T = Zle A;P;, where A;'s are the eigenvalues of T.

R) These P;’s are the orthogonal projections from V to the 4;-eigenspace ker(T -

A; 1) of T, denoted as

P, = ]_[ (T),i=1,...,k.

ker(T-A;1)

You should know how to compute P;’s when T'(v) = Av in the course MAT2040.

Proof. Since T has a basis of eigenvectors, by definition, T is diagonalizable. By propo-
sition (8.2),

mr(x) = (x— A1)+ (x — ),

where A;’s are distinct. By spectral decomposition corollary (??), it suffices to show P;’s

are self-disjoint.

e Recall that P; = a;(T)qi(T) := by, 7™ + --- + b1T + boT, i.e., a polynomial of T, and
therefore
P! =b,(T")Y" + -+ b1(T") + bol.

4
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We claim that P; is normal: Since 7'T = TT’, we imply
(T')PT* =TT")",¥p,q € N
which follows that

PiP! = (byT™ + -+ + bol)(by(T")" + - -+ + b1(T") + bol)

= > bby(@)yy

1<x,y<m

= D, bY@y

1<x,y<m
= bp(T'Y" + -+ b1(T") + bo D) (b, T™ + -+ - + bol)

= P{P;

e In general, S is self-adjoint, which implies § is normal, but not vice versa. How-

ever, the converse holds if further all eigenvalues of S are real numbers:

By Theorem (12.1), we imply S is orthonormally diagonalizable, and its diagonal

representation is of the form
(S)g;,g = diag(/l1,. . .,/lk).

Note that 8 is also a basis for §” and elements of 8 are eigenvalues of §’, by

part (3) in proposition (12.1). Therefore,
(S')g;,g = diag(/ll,. . .,/lk).

Therefore, S =S".

In particular, for § = P;, we can easily show all eigenvalues of P; are 0 or 1, which are

real. Therefore, P;’s are self-adjoint. ]

358



Corollary 12.2 Let T:V — V be a linear operator on C-inner product space with
dim(V) < co. Then T is normal if and only if 7’ = f(T) for some polynomial f(x) € C[x].
Proof. e For the reverse direction, if 7" = f(T), then T'T = f(T)T =T f(T)=TT".
e For the forward direction, suppose that T is normal, then by corollary (12.1),
k
T = Z A;iP;, P; = f(T), where P;’s are self-adjoint,

i=1

which follows that

r) The normal operator is a generalization of Hermitian matrices, and it inherits

many nice properties of Hermitian.

12.1.2. Tensor Product

Motivation. Let U,V,W be vector spaces. We want to study bilinear maps f: U X W —

U,ie,

f(aV1 + vaIW) = af(Vl,W) + bf(VZ/w)

f(vl cwy + dWZ) = Cf(v/ Wl) + df(v/WZ)
Unfortunately, bilinear form usually is not a linear transformation!
= Example 12.1 o Let f:R"XRR" —» R be with (&, v) — (u,v).
o Let f: M,y (IF) X Myx,,(IF) = M,,,,(IF) be with f(A,B) = AB.
o Let f:IF[x] xF[x] = IF be with f(p(x),q(x)) = p(1)q(2)
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e Let f:F[x]xF[x] — F[x] be with f(p(x),q(x)) = p(x)g(x).
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