
Chapter 11

Week11

11.1. Monday for MAT3040
Reviewing. Adjoint Operator: hT 0(vvv),wwwi = hvvv,T(www)i.

11.1.1. Self-Adjoint Operator

Definition 11.1 [Self-Adjoint] Let V be an inner product space and T : V !V be a linear

operator. Then T is self-adjoint if T
0 = T . ⌅

⌅ Example 11.1 Let V =C
n
, and B = {eee1, . . . , eeen} be a orthonormal basis. Let T : V !V

be given by

T(vvv) = AAAvvv, where A 2 Mn⇥n(C).

Or equivalently, there exists basis B such that (T)B,B = AAA.

In such case, T is self-adjoint if and only if (T 0)B,B = (T)B,B , i.e., (T)TB,B = (T)B,B , i.e.,

AAA
H = AAA.

Therefore, T(vvv) = AAAvvv is self-adjoint if and only if AAA
H = AAA.

Moreover, if C is replaced by R, then T is seld-adjoint if and only if AAA is symmetric. ⌅

R The notion of self-adjoint for linear operator is essentially the generalized

notion of Hermitian for matrix that we have stuided in MAT2040.

We also have some nice properties for self-adjoint, and the proof for which are

essentially the same for the proof in the case of Hermitian matrices.
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Proposition 11.1 If � is an eigenvalue of a self-adjoint operator T , then � 2 R.

Proof. Suppose there is an eigen-pair (�,www) for www , 000, then

�hwww,wwwi = hwww,�wwwi

= hwww,T(www)i = hT 0(www),wwwi

= hT(www),wwwi = h�www,wwwi

= �̄hwww,wwwi

Since hwww,wwwi , 0 by non-degeneracy property, we have � = �̄, i.e., � 2 R. ⌅

Proposition 11.2 If U  V is T-invariant over the self-adjoint operator T , then so is U
?.

Proof. It suffices to show T(vvv) 2 U
?,8vvv 2 U

?, i.e., for any uuu 2 U, check that

huuu,T(vvv)i = hT 0(uuu),vvvi = hT(uuu),vvvi = 0,

where the last equality is because that T(uuu) 2 U and vvv 2 U
?. Therefore, T(vvv) 2 U

?. ⌅

Theorem 11.1 If T : V ! V is self-adjoint, and dim(V) < 1, then there exists an

orthonormal basis of eigenvectors of T , i.e., an orthonormal basis of V such that any

element from this basis is an eigenvector of T .

Proof. We use the induction on dim(V):

• The result is trival for dim(V) = 1.

• Suppose that this theorem holds for all vector spaces V with dim(V)  k, then we

want to show the theorem holds when dim(V) = k + 1:

Suppose that T : V ! V is self-adjoint with dim(V) = k + 1, then consider

XT (x) = x
k+1 + · · · + a1x + a0, ai 2 K, where K denotes R or C.
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– If K = C, then XT (x) can be decomposed as

XT (x) = (x � �1) · · · (x � �k+1)

In paricular, we obtain the eigen-pair (�1,vvv)

– If K =R, i.e., we treat real number as scalars, then

XT (x) = (x � �1) · · · (x � �k+1), where �i 2 C.

However, we should argue that �1 2 R, since otherwise �1 cannot be treated

as scalars, which makes the following arguments invalid.

By proposition (11.1), we imply all �i’s are in R. Moreover, we also obtain

the eigen-pair (�1,vvv)

Consider U = span{vvv}, then

– U is T-invariant

– V =U � U
?, since V is finite dimensional

– U
? is T-invariant.

Consider T |U? , which is a self-adjoint operator on U
?, with dim(U?) = k + 1.

By induction, there exists an orthonormal basis {eee2, . . . , eeek+1} of eigenvectors of

T |U? .

Consider the basis B = {vvv0 = vvv/kvvvk, eee2, . . . , eeek+1}. As a result,

1. B forms a basis of V

2. All vvv0, eeei are of norm 1 eigenvectors of T .

3. B is an orthonormal set, e.g., hvvv0, eeeii = 0, where vvv0 2 U and eeei 2 U
?.

Therefore, B is a basis of orthonormal eigenvectors of V .

⌅
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Corollary 11.1 If dim(V) <1, and T : V !V is self-adjoint, then there exists orthonormal

basis B such that

(T)B,B = diag(�1, . . . ,�n)

In paticular, for all real symmtric matrix AAA 2 S
n
, there exists orthogonal matrix P (P

T
P = IIIn)

such that

P
�1

AP = diag(�1, . . . ,�n)

Proof. 1. By applying theorem (11.1), there exists orthonormal basis of V , say B =

{vvv1, . . . ,vvvn} such that T(vvvi) = �ivvvi. Directly writing the basis representation gives

(T)B,B = diag(�1, . . . ,�n).

2. For the second part, consider T : R
n ! R

n by T(vvv) = AAAvvv. Since AAA
T = AAA, we imply

T is self-adjoint. There exists orthonormal basis B = {vvv1, . . . ,vvvn} such that

(T)B,B = diag(�1, . . . ,�n).

In particular, if A = {eee1, . . . , eeen}, then (T)A,A = AAA. We construct P := CA,B , which

is the change of basis matrix from B to A, then

P =

✓
vvv1 · · · vvvn

◆

and

P
�1(T)A,AP = (T)B,B

Or equivalently, P
�1

AP = diag(�1, . . . ,�n), with

P
T

P =

©≠≠≠≠≠
´

vvvT
1
...

vvvT
n

™ÆÆÆÆÆ
¨

✓
vvv1 · · · vvvn

◆
= III

⌅
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11.1.2. Orthononal/Unitary Operators

Definition 11.2 A linear operator T : V !V over K with hT(www),T(vvv)i = hwww,vvvi,8vvv,www 2 V ,

is called

1. Orthogonal if K =R

2. Unitary if K = C

⌅

Proposition 11.3 T is orthogonal / unitary if and only if T
0 �T = I

Proof. The reverse direction is by directly checking that

hT(www),T(vvv)i = hT 0 �T(www),vvvi = hwww,vvvi

The forward direction is by checking T
0 �T(www) = www,8www 2 V :

hT 0 �T(www),vvvi = hT(www),T(vvv)i = hwww,vvvi =) hT 0 �T(www) � www,vvvi = 0,8vvv 2 V

By non-degeneracy, T
0 �T(www) � www = 0, i.e., T

0 �T(www) = www,8www 2 V . ⌅

⌅ Example 11.2 Let T : K
n ! K

n
be given by T(vvv) = Avvv. Then T is orthogonal implies

(T 0)B,B(T)B,B = I.

(Orthogonal) When K =R, then A
T

A = I

(Unitary) When K = C, then A
H

A = I. ⌅

Definition 11.3 [Orthogonal/Unitary Group]

Orthognoal Group : O(n,R) = {A 2 Mn⇥n(R) | A
T

A = I}

Unitary Group : O(n,R) = {A 2 Mn⇥n(C) | A
H

A = I}

⌅
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