Chapter 11

Week11

11.1. Monday for MAT 3040

Reviewing. Adjoint Operator: (T”(v),w) = (v,T(w)).

11.1.1. Self-Adjoint Operator

Definition 11.1  [Self-Adjoint] Let V' be an inner product space and 7:V — V be a linear

operator. Then T is self-adjoint if T/ =T. .

s Example 11.1 Let V=C", and B ={ey,...,e,} be a orthonormal basis. Let T:V -V
be given by
T(v) = Av, where A € M, (C).

Or equivalently, there exists basis 8 such that (T)g g = A.

In such case, T is self-adjoint if and only if (T")g,8 = (T)g,3, i.e., (T)g s=M)sgs e,
AT = A
Therefore, T(v) = Av is self-adjoint if and only if AT = A.

Moreover, if C is replaced by IR, then T is seld-adjoint if and only if A is symmetric. =

R The notion of self-adjoint for linear operator is essentially the generalized

notion of Hermitian for matrix that we have stuided in MAT2040.

We also have some nice properties for self-adjoint, and the proof for which are

essentially the same for the proof in the case of Hermitian matrices.
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Proposition 11.1  If A is an eigenvalue of a self-adjoint operator T, then 1 € R.

Proof. Suppose there is an eigen-pair (4, w) for w # 0, then

Aw,w) =(w, Aw)
=(w,T(w)) =(T'(w),w)
=(T(w),w) = (iw,w)

= Uw,w)
Since (w,w) # 0 by non-degeneracy property, we have 1= 21, ie., 1 € R. ]
Proposition 11.2  If U <V is T-invariant over the self-adjoint operator 7, then so is U™.
Proof. Tt suffices to show T(v) € U+, Vv € U*, i.e., for any u € U, check that
(u,T(v)) =(T"(u),v) = (T(w),v) =0,

where the last equality is because that T(u) € U and v € U*. Therefore, T(v) e U*. =

Theorem 11.1  If T:V — V is self-adjoint, and dim(V) < oo, then there exists an

orthonormal basis of eigenvectors of T, i.e., an orthonormal basis of V such that any

element from this basis is an eigenvector of T

Proof. We use the induction on dim(V):
e The result is trival for dim(V) = 1.

e Suppose that this theorem holds for all vector spaces V with dim(V) < k, then we

want to show the theorem holds when dim(V) = k + 1:

Suppose that T : V — V is self-adjoint with dim(V) = k + 1, then consider

Xr(x)=x**1+ . v+ aqx+ay, a; € K, where K denotes R or C.
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- If K=C, then X7(x) can be decomposed as

Xr(x) = (x = A1)+ (x = A1)

In paricular, we obtain the eigen-pair (11,v)

- f K =R, i.e., we treat real number as scalars, then

Xr(x)=(x—27)- - (x — Ak41), where A; € C.

However, we should argue that A; € R, since otherwise A; cannot be treated

as scalars, which makes the following arguments invalid.

By proposition (11.1), we imply all A;’s are in IR. Moreover, we also obtain

the eigen-pair (11,v)
Consider U = span{v}, then
— U is T-invariant

- V=U®UH, since V is finite dimensional

— U+* is T-invariant.

Consider T |+, which is a self-adjoint operator on U+, with dim(U~+) = k + 1.

By induction, there exists an orthonormal basis {e,...,ex1} of eigenvectors of

T lye.

Consider the basis 8 = {v' =v/||v||,ey,...,er+1}. As a result,

1. B forms a basis of V
2. All v/, e; are of norm 1 eigenvectors of 7.

3. B is an orthonormal set, e.g., (v/,e;) =0, where v/ € U and e; € U*.

Therefore, 8 is a basis of orthonormal eigenvectors of V.
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Corollary 11.1  If dim(V) <0, and T : V — V is self-adjoint, then there exists orthonormal

basis 8B such that

(T) g, = diag(Ay,...,4,)

In paticular, for all real symmtric matrix A € S™, there exists orthogonal matrix P (PTP=1,,)
such that

Plap= diag(Ay,...,4n)

Proof. 1. By applying theorem (11.1), there exists orthonormal basis of V, say 8 =

{v1,...,va} such that T(v;) = A;v;. Directly writing the basis representation gives
(T)g,8 = diag(d1, ..., An).

2. For the second part, consider T : R” — R” by T(v) = Av. Since AT = A, we imply

T is self-adjoint. There exists orthonormal basis 8 = {v1,...,v,} such that
(T)B,B = diag(/ll, . ,/ln).

In particular, if A ={eq,...,e,}, then (T)a,4 = A. We construct P := C#,g, which

is the change of basis matrix from 8 to A, then
P= (V1 - vn)

P D aaP=T)ss

and

Or equivalently, PlAP = diag(Ay,...,4,), with

—H

=N
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11.1.2. Orthononal/Unitary Operators

Definition 11.2 A linear operator T : V — V over K with (T(w),T(v)) = (w,v),Yv,w €V,

is called

1. Orthogonal if K=1R
2. Unitary if K=C

Proposition 11.3 T is orthogonal / unitary if and only if 7/ o T =1

Proof. The reverse direction is by directly checking that
(T(w),T(v)) =(T" o T(w),v) =(w,v)
The forward direction is by checking 7" o T(w) = w,Vw € V:
(T' oT(w),v) ={T(w), T(v)) =(w,v) = (T’ oT(w)—w,v)=0,YveV
By non-degeneracy, 7’ o T(w) —w =0, ie,T' o T(w)=w,VweV. [

= Example 11.2 Let T : K" — K" be given by T(v) = Av. Then T is orthogonal implies

T)8,8T)8,8=1.

(Orthogonal) When K = R, then ATA=1

(Unitary) When K = C, then AHA =1. .
Definition 11.3  [Orthogonal/Unitary Group]

Orthognoal Group : O(n,R) = {A € Myxn(R) | ATA = I}

Unitary Group : O(n,R) = {A € M,,,,(C) | AA =1}
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