Chapter 11

Week11

11.1. Monday for MAT3040

Reviewing. Adjoint Operator: $\langle T'(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, T(\mathbf{w}) \rangle$.

11.1.1. Self-Adjoint Operator

Definition 11.1 [Self-Adjoint] Let V be an inner product space and $T: V \rightarrow V$ be a linear operator. Then T is **self-adjoint** if T' = T.

• Example 11.1 Let $V = \mathbb{C}^n$, and $\mathcal{B} = \{e_1, \dots, e_n\}$ be a orthonormal basis. Let $T : V \to V$ be given by

$$T(\mathbf{v}) = \mathbf{A}\mathbf{v}$$
, where $A \in M_{n \times n}(\mathbb{C})$.

Or equivalently, there exists basis \mathcal{B} such that $(T)_{\mathcal{B},\mathcal{B}} = \mathbf{A}$.

In such case, T is self-adjoint if and only if $(T')_{\mathcal{B},\mathcal{B}} = (T)_{\mathcal{B},\mathcal{B}}$, i.e., $\overline{(T)_{\mathcal{B},\mathcal{B}}^{T}} = (T)_{\mathcal{B},\mathcal{B}}$, i.e., $A^{H} = A$.

Therefore, $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$ is self-adjoint if and only if $\mathbf{A}^{H} = \mathbf{A}$.

Moreover, if $\mathbb C$ is replaced by $\mathbb R$, then T is seld-adjoint if and only if A is symmetric.

R The notion of self-adjoint for linear operator is essentially the generalized notion of Hermitian for matrix that we have stuided in MAT2040.

We also have some nice properties for self-adjoint, and the proof for which are essentially the same for the proof in the case of Hermitian matrices. **Proposition 11.1** If λ is an eigenvalue of a self-adjoint operator *T*, then $\lambda \in \mathbb{R}$.

Proof. Suppose there is an eigen-pair (λ, w) for $w \neq 0$, then

$$\lambda \langle \boldsymbol{w}, \boldsymbol{w} \rangle = \langle \boldsymbol{w}, \lambda \boldsymbol{w} \rangle$$
$$= \langle \boldsymbol{w}, T(\boldsymbol{w}) \rangle = \langle T'(\boldsymbol{w}), \boldsymbol{w} \rangle$$
$$= \langle T(\boldsymbol{w}), \boldsymbol{w} \rangle = \langle \lambda \boldsymbol{w}, \boldsymbol{w} \rangle$$
$$= \bar{\lambda} \langle \boldsymbol{w}, \boldsymbol{w} \rangle$$

Since $\langle \boldsymbol{w}, \boldsymbol{w} \rangle \neq 0$ by non-degeneracy property, we have $\lambda = \overline{\lambda}$, i.e., $\lambda \in \mathbb{R}$.

Proposition 11.2 If $U \le V$ is *T*-invariant over the self-adjoint operator *T*, then so is U^{\perp} .

Proof. It suffices to show $T(\mathbf{v}) \in U^{\perp}, \forall \mathbf{v} \in U^{\perp}$, i.e., for any $\mathbf{u} \in U$, check that

$$\langle \boldsymbol{u}, T(\boldsymbol{v}) \rangle = \langle T'(\boldsymbol{u}), \boldsymbol{v} \rangle = \langle T(\boldsymbol{u}), \boldsymbol{v} \rangle = 0,$$

where the last equality is because that $T(\boldsymbol{u}) \in U$ and $\boldsymbol{v} \in U^{\perp}$. Therefore, $T(\boldsymbol{v}) \in U^{\perp}$.

Theorem 11.1 If $T: V \to V$ is self-adjoint, and $\dim(V) < \infty$, then there exists an orthonormal basis of eigenvectors of *T*, i.e., an orthonormal basis of *V* such that any element from this basis is an eigenvector of *T*.

Proof. We use the induction on dim(*V*):

• The result is trival for $\dim(V) = 1$.

. .

Suppose that this theorem holds for all vector spaces V with dim(V) ≤ k, then we want to show the theorem holds when dim(V) = k + 1:

Suppose that $T: V \rightarrow V$ is self-adjoint with dim(V) = k + 1, then consider

$$X_T(x) = x^{k+1} + \dots + a_1 x + a_0, \quad a_i \in \mathbb{K}, \text{ where } \mathbb{K} \text{ denotes } \mathbb{R} \text{ or } \mathbb{C}.$$

– If $\mathbb{K} = \mathbb{C}$, then $X_T(x)$ can be decomposed as

$$\mathcal{X}_T(x) = (x - \lambda_1) \cdots (x - \lambda_{k+1})$$

In paricular, we obtain the eigen-pair (λ_1, \mathbf{v})

– If $\mathbb{K} = \mathbb{R}$, i.e., we treat real number as scalars, then

$$X_T(x) = (x - \lambda_1) \cdots (x - \lambda_{k+1})$$
, where $\lambda_i \in \mathbb{C}$.

However, we should argue that $\lambda_1 \in \mathbb{R}$, since otherwise λ_1 cannot be treated as scalars, which makes the following arguments invalid.

By proposition (11.1), we imply all λ_i 's are in \mathbb{R} . Moreover, we also obtain the eigen-pair (λ_1 , \boldsymbol{v})

Consider $U = \text{span}\{v\}$, then

- U is T-invariant

– $V = U \oplus U^{\perp}$, since *V* is finite dimensional

– U^{\perp} is *T*-invariant.

Consider $T \mid_{U^{\perp}}$, which is a self-adjoint operator on U^{\perp} , with dim $(U^{\perp}) = k + 1$.

By induction, there exists an orthonormal basis $\{e_2, ..., e_{k+1}\}$ of eigenvectors of $T \mid_{U^{\perp}}$.

Consider the basis $\mathcal{B} = \{ \mathbf{v}' = \mathbf{v} / \|\mathbf{v}\|, \mathbf{e}_2, \dots, \mathbf{e}_{k+1} \}$. As a result,

- 1. \mathcal{B} forms a basis of *V*
- 2. All v', e_i are of norm 1 eigenvectors of T.
- 3. \mathcal{B} is an orthonormal set, e.g., $\langle \mathbf{v}', \mathbf{e}_i \rangle = 0$, where $\mathbf{v}' \in U$ and $\mathbf{e}_i \in U^{\perp}$.

Therefore, \mathcal{B} is a basis of orthonormal eigenvectors of *V*.

Corollary 11.1 If dim $(V) < \infty$, and $T: V \to V$ is self-adjoint, then there exists orthonormal basis \mathcal{B} such that

$$(T)_{\mathcal{B},\mathcal{B}} = \operatorname{diag}(\lambda_1,\ldots,\lambda_n)$$

In paticular, for all real symmetric matrix $A \in \mathbb{S}^n$, there exists orthogonal matrix $P(P^T P = I_n)$ such that

$$P^{-1}AP = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$$

Proof. 1. By applying theorem (11.1), there exists orthonormal basis of *V*, say $\mathcal{B} = \{v_1, ..., v_n\}$ such that $T(v_i) = \lambda_i v_i$. Directly writing the basis representation gives

$$(T)_{\mathcal{B},\mathcal{B}} = \operatorname{diag}(\lambda_1,\ldots,\lambda_n)$$

2. For the second part, consider $T : \mathbb{R}^n \to \mathbb{R}^n$ by $T(\mathbf{v}) = \mathbf{A}\mathbf{v}$. Since $\mathbf{A}^T = \mathbf{A}$, we imply *T* is self-adjoint. There exists orthonormal basis $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ such that

$$(T)_{\mathcal{B},\mathcal{B}} = \operatorname{diag}(\lambda_1,\ldots,\lambda_n).$$

In particular, if $\mathcal{A} = \{e_1, \dots, e_n\}$, then $(T)_{\mathcal{A},\mathcal{A}} = A$. We construct $P := C_{\mathcal{A},\mathcal{B}}$, which is the change of basis matrix from \mathcal{B} to \mathcal{A} , then

$$P = \begin{pmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{pmatrix}$$

and

$$P^{-1}(T)_{\mathcal{A},\mathcal{A}}P = (T)_{\mathcal{B},\mathcal{B}}$$

Or equivalently, $P^{-1}AP = \text{diag}(\lambda_1, \dots, \lambda_n)$, with

$$P^{\mathrm{T}}P = \begin{pmatrix} \mathbf{v}_{1}^{\mathrm{T}} \\ \vdots \\ \mathbf{v}_{n}^{\mathrm{T}} \end{pmatrix} \begin{pmatrix} \mathbf{v}_{1} & \cdots & \mathbf{v}_{n} \end{pmatrix} = \mathbf{I}$$

11.1.2. Orthononal/Unitary Operators

Definition 11.2 A linear operator $T: V \to V$ over \mathbb{K} with $\langle T(\boldsymbol{w}), T(\boldsymbol{v}) \rangle = \langle \boldsymbol{w}, \boldsymbol{v} \rangle, \forall \boldsymbol{v}, \boldsymbol{w} \in V$, is called

- 1. Orthogonal if $\mathbb{K} = \mathbb{R}$
- 2. Unitary if $\mathbb{K} = \mathbb{C}$

Proposition 11.3 *T* is orthogonal / unitary if and only if $T' \circ T = I$

Proof. The reverse direction is by directly checking that

$$\langle T(\boldsymbol{w}), T(\boldsymbol{v}) \rangle = \langle T' \circ T(\boldsymbol{w}), \boldsymbol{v} \rangle = \langle \boldsymbol{w}, \boldsymbol{v} \rangle$$

The forward direction is by checking $T' \circ T(w) = w, \forall w \in V$:

$$\langle T' \circ T(\boldsymbol{w}), \boldsymbol{v} \rangle = \langle T(\boldsymbol{w}), T(\boldsymbol{v}) \rangle = \langle \boldsymbol{w}, \boldsymbol{v} \rangle \implies \langle T' \circ T(\boldsymbol{w}) - \boldsymbol{w}, \boldsymbol{v} \rangle = 0, \forall \boldsymbol{v} \in V$$

By non-degeneracy, $T' \circ T(w) - w = 0$, i.e., $T' \circ T(w) = w$, $\forall w \in V$.

Example 11.2 Let T: Kⁿ → Kⁿ be given by T(v) = Av. Then T is orthogonal implies (T')_{B,B}(T)_{B,B} = I.
(Orthogonal) When K = R, then A^TA = I
(Unitary) When K = C, then A^HA = I.

Definition 11.3 [Orthogonal/Unitary Group]

Orthognoal Group : $O(n, \mathbb{R}) = \{A \in M_{n \times n}(\mathbb{R}) \mid A^{\mathrm{T}}A = I\}$

Unitary Group : $O(n, \mathbb{R}) = \{A \in M_{n \times n}(\mathbb{C}) \mid A^{H}A = I\}$