10.2. Wednesday for MAT3040

Reviewing. Consider the mapping

$$\phi: \qquad V \to V^*$$
with $\phi(\mathbf{v}) = \phi_{\mathbf{v}}$
where $\phi_{\mathbf{v}}(\mathbf{w}) = \langle \mathbf{v}, \mathbf{w} \rangle$

The Riesz Representation Theorem claims that

- 1. ϕ is a \mathbb{R} -linear transformation.
- 2. ϕ is injective.
- 3. If $\dim(V) < \infty$, then ϕ is an isomorphism.

Proof for Claim (2). Consider the equality $\phi(\mathbf{v}) = \phi_{\mathbf{v}} = 0_{V^*}$, which implies

$$\phi_{\boldsymbol{v}}(\boldsymbol{w}) = \langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0, \forall \boldsymbol{w} \in V$$

By the non-degenercy property, $v = 0_v$, i.e., ϕ is injective.

Proof for Claim (3). Since $\dim_{\mathbb{R}}(V) = \dim_{\mathbb{R}}(V^*)$, and ϕ is injective as a \mathbb{R} -linear transformation, we imply ϕ is an isomorphism from V to V^* , where V, V^* are treated as vector spaces over \mathbb{R} .

10.2.1. Orthogonal Complement

Definition 10.5 [Orthogonal Complement] Let $U \le V$ be a subspace of an inner product space. Then the **orthogonal complement** of U is

$$U^{\perp} = \{ \boldsymbol{v} \in V \mid \langle \boldsymbol{v}, \boldsymbol{u} \rangle = 0, \forall \boldsymbol{u} \in U \}$$

The analysis for orthogonal complement for vector spaces over C is quite similar as what we have studied in MAT2040.

Proposition 10.1 1. U^{\perp} is a subspace of *V*

- 2. $U \cap U^{\perp} = \{0\}$
- 3. $U_1 \subseteq U_2$ implies $U_2^{\perp} \leq U_1^{\perp}$.

Proof. 1. Suppose that $v_1, v_2 \in U^{\perp}$, where $a, b \in K$ ($K = \mathbb{C}$ or \mathbb{R}), then for all $u \in U$,

$$\langle a\mathbf{v}_1 + b\mathbf{v}_2, \mathbf{u} \rangle = \bar{a} \langle \mathbf{v}_1, \mathbf{u} \rangle + \bar{b} \langle \mathbf{v}_2, \mathbf{u} \rangle$$
$$= \bar{a} \cdot 0 + \bar{b} \cdot 0 = 0$$

Therefore, $a\mathbf{v}_1 + b\mathbf{v}_2 \in U^{\perp}$.

Suppose that *u* ∈ U ∩ U[⊥], then we imply ⟨*u*, *u*⟩ = 0. By the positive-definiteness of inner product, *u* = 0.

3. The statement (3) is easy.

Proposition 10.2 1. If dim(*V*) < ∞ and $U \le V$, then $V = U \oplus U^{\perp}$

2. If $U, W \leq V$, then

$$(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$$
$$(U \cap W)^{\perp} \supseteq U^{\perp} + W^{\perp}$$
$$(U^{\perp})^{\perp} \supseteq U$$

Moreover, if $\dim(V) < \infty$, then these are equalities.

- *Proof.* 1. Suppose that $\{v_1, \dots, v_k\}$ forms a basis for U, and by basis extension, we obtain $\{v_1, \dots, v_k, v_{k+1}, \dots, v_n\}$ is a basis for V. By Gram-Schmidt Process, any finite basis induces an orthonormal basis. Therefore, suppose that $\{e_1, \dots, e_k\}$ forms an orthonormal basis for U, and $\{e_{k+1}, \dots, e_n\}$ forms an orthonormal basis for U^{\perp} . It's easy to show $V = U + U^{\perp}$ using orthonormal basis.
 - 2. (a) The reverse part $(U + W)^{\perp} \supseteq U^{\perp} \cap W^{\perp}$ is trivial; for the forward part, suppose

 $\boldsymbol{v} \in (U+W)^{\perp}$, then

$$\langle \boldsymbol{v}, \boldsymbol{u} + \boldsymbol{w} \rangle = 0, \ \forall \boldsymbol{u} \in U, \ \boldsymbol{w} \in W$$

Taking $\boldsymbol{u} \equiv \boldsymbol{0}$ in the equality above gives $\langle \boldsymbol{v}, \boldsymbol{w} \rangle = 0$, i.e., $\boldsymbol{v} \in U^{\perp}$. Similarly, $\boldsymbol{v} \in W^{\perp}$.

- (b) Follow the similar argument as in (2a). If dim(*V*) < ∞ , then write down the orthonormal basis for $U^{\perp} + W^{\perp}$ and $(U \cap W)^{\perp}$.
- (c) Follow the similar argument as in (2a). If $\dim(V) < \infty$, then

$$V = U^{\perp} \oplus (U^{\perp})^{\perp} = U \oplus U^{\perp}.$$

Therefore, $(U^{\perp})^{\perp} = U$.

Proposition 10.3 The mapping $\phi : V \to V^*$ maps $U^{\perp} \leq V$ injectively to $Ann(U) \leq V^*$. If $\dim(V) < \infty$, then $U^{\perp} \cong Ann(U)$ as \mathbb{R} -vector spaces

Proof. The injectivity of ϕ has been shown at the beginning of this lecture. For any $v \in U^{\perp}$, we imply $\phi_{v}(u) = 0, \forall u \in U$, i.e., $\phi_{v} \in \text{Ann}(U)$.

Therefore, $\phi(U^{\perp}) \leq \operatorname{Ann}(U)$.

Provided that $\dim(V) < \infty$, by (1) in proposition (10.2),

$$\dim(U) + \dim(U^{\perp}) = \dim(V)$$

Since $\dim(U) + \dim(\operatorname{Ann}(U)) = \dim(V)$, we imply $\dim(U^{\perp}) = \dim(\operatorname{Ann}(U))$.

Moreover,

$$\phi: U^{\perp} \to \operatorname{Ann}(U)$$

is an isomorphism between \mathbb{R} -vector spaces U^{\perp} and Ann(U).

10.2.2. Adjoint Map

Motivation. Then we study the induced mapping based on a given linear operator T, denoted as T'. This induced mapping essentially plays the similar role as taking the Hermitian for a complex matrix.

Notation. Previously we have studied the **adjoint** of $T : V \to W$, denoted as $T^* : W^* \to V^*$. However, from now on, we use the same terminalogy but with different meaning. If $T : V \to V$ is a linear operator, then the **adjoint** of *T* is the linear operator $T^* : W^* \to V^*$ defined as follows.

Definition 10.6 [Adjoint] Let $T: V \to V$ be a linear operator between inner product spaces. The **adjoint** of *T* is defined as $T': V \to V$ satisfying

$$\langle T'(\boldsymbol{v}), \boldsymbol{w} \rangle = \langle \boldsymbol{v}, T(\boldsymbol{w}) \rangle, \ \forall \boldsymbol{w} \in V$$
(10.1)

Proposition 10.4 If dim(*V*) < ∞ , then *T*' exists, and it is unique. Moreove, *T*' is a linear map.

Proof. Fix any $v \in V$. Consider the mapping

$$\alpha_{\boldsymbol{v}}: \boldsymbol{w} \xrightarrow{T} T(\boldsymbol{w}) \xrightarrow{\phi_{\boldsymbol{v}}} \langle \boldsymbol{v}, T(\boldsymbol{w}) \rangle$$

This is a linear transformation from *V* to \mathbb{F} , i.e., $\alpha_{\mathbf{v}} \in V^*$

By Riesz representation theorem, ϕ is an isomorphism from V to V^* . Moreover, $\phi(T'(\mathbf{v})) = \alpha_{\mathbf{v}}$. Therefore, for any $\alpha_{\mathbf{v}} \in V^*$, there exists a vector $T'(\mathbf{v}) \in V$ such that

$$\phi(T'(\mathbf{v})) = \alpha_{\mathbf{v}} \in V^*$$

Or equivalently, $\phi_{T'(v)}(w) = \alpha_v(w), \forall w \in V$, i.e., $\langle T'(v), w \rangle = \langle v, T(w) \rangle$.

Henceforce, from \boldsymbol{v} we have constructed $T'(\boldsymbol{v})$ satisfying (10.1). Now define $T': V \rightarrow V$ by $\boldsymbol{v} \mapsto T'(\boldsymbol{v})$.

- Since the choice of T'(v) is unique by the injectivity of ϕ , T' is well-defined.
- Now we show *T'* is a linear transformation: Let *v*₁, *v*₂ ∈ *V*, *a*, *b* ∈ *K*. For all *w* ∈ *V*, we have

$$\langle T'(a\mathbf{v}_1 + b\mathbf{v}_2), \mathbf{w} \rangle = \langle a\mathbf{v}_1 + b\mathbf{v}_2, T(\mathbf{w}) \rangle$$
$$= \bar{a} \langle \mathbf{v}_1, T(\mathbf{w}) \rangle + \bar{b} \langle \mathbf{v}_2, T(\mathbf{w}) \rangle$$
$$= \bar{a} \langle T'(\mathbf{v}_1), \mathbf{w} \rangle + \bar{b} \langle T'(\mathbf{v}_2), \mathbf{w} \rangle$$
$$= \langle aT'(\mathbf{v}_1) + bT'(\mathbf{v}_2), \mathbf{w} \rangle$$

Therfore,

$$\langle T'(a\boldsymbol{v}_1 + b\boldsymbol{v}_2) - [aT'(\boldsymbol{v}_1) + bT'(\boldsymbol{v}_2)], \boldsymbol{w} \rangle = 0, \ \forall \boldsymbol{w} \in V$$

By the non-degeneracy of inner product,

$$T'(av_1 + bv_2) - [aT'(v_1) + bT'(v_2)] = \mathbf{0},$$

i.e.,
$$T'(av_1 + bv_2) = aT'(v_1) + bT'(v_2)$$

• Example 10.2 Let $V = \mathbb{R}^n$, $\langle \cdot, \cdot \rangle$ as the usual inner product. Consider the matrixmultiplication mapping

$$T: \quad V \to V$$
$$T(\mathbf{v}) = A\mathbf{v}$$

Then $\langle T'(\boldsymbol{v}), \boldsymbol{w} \rangle = \langle \boldsymbol{v}, T(\boldsymbol{w}) \rangle$ implies

$$(T'(\mathbf{v}))^{\mathrm{T}}\mathbf{w} = \langle \mathbf{v}, \mathbf{A}\mathbf{w} \rangle$$
$$= \mathbf{v}^{\mathrm{T}}\mathbf{A}\mathbf{w}$$
$$= (\mathbf{A}^{\mathrm{T}}\mathbf{v})^{\mathrm{T}}\mathbf{w}$$

Therfore, $T'(\mathbf{v}) = A^{\mathrm{T}}\mathbf{v}$.

Proposition 10.5 Let $T: V \to V$ be a linear transformation, V a inner product space. Suppose that $\mathcal{B} = \{e_1, \dots, e_n\}$ is an orthonormal basis of V, then

$$(T')_{\mathcal{B},\mathcal{B}} = \overline{((T)_{\mathcal{B},\mathcal{B}})^{\mathrm{T}}}$$

Proof. Suppose that $(T)_{\mathcal{B},\mathcal{B}} = (a_{ij})$, where $T(\boldsymbol{e}_j) = \sum_{k=1}^n a_{kj} \boldsymbol{e}_k$, then

$$\langle \boldsymbol{e}_i, T(\boldsymbol{e}_j) \rangle = \langle \boldsymbol{e}_i, \sum_{k=1}^n a_{kj} \boldsymbol{e}_k \rangle$$
$$= \sum_{k=1}^n a_{kj} \langle \boldsymbol{e}_i, \boldsymbol{e}_k \rangle$$
$$= a_{ij}$$

Also, suppose $(T')_{\mathcal{B},\mathcal{B}} = (b_{ij})$, we imply $T'(\boldsymbol{e}_j) = \sum_{k=1}^n b_{ij} \boldsymbol{e}_k$, which follows that

$$\langle \boldsymbol{e}_i, T'(\boldsymbol{e}_j) \rangle = b_{ij} \implies \overline{\langle T'(\boldsymbol{e}_j), \boldsymbol{e}_i \rangle} = b_{ij} \implies \overline{\langle \boldsymbol{e}_j, T(\boldsymbol{e}_i) \rangle} = b_{ij},$$

i.e., $\overline{a_{ji}} = b_{ij}$.

R Proposition (10.5) does not hold if \mathcal{B} is not an orthonormal basis.