10.2. Wednesday for MAT3040

Reviewing. Consider the mapping

¢ VoV
with — ¢(v) = ¢y

where ¢, (w) = (v,w)

The Riesz Representation Theorem claims that

1. ¢ is a R-linear transformation.
2. ¢ is injective.

3. If dim(V) < oo, then ¢ is an isomorphism.

Proof for Claim (2). Consider the equality ¢(v) = ¢y, = Oy+, which implies
oy(Ww)=(v,w)=0,YweV

By the non-degenercy property, v = 0,, i.e., ¢ is injective. u

Proof for Claim (3). Since dimg(V) = dimgr(V*), and ¢ is injective as a R-linear transfor-
mation, we imply ¢ is an isomorphism from V to V*, where V,V* are treated as vector

spaces over RR. ]

10.2.1. Orthogonal Complement

Definition 10.5 [Orthogonal Complement] Let U <V be a subspace of an inner product

space. Then the orthogonal complement of U is

Ut={veV|{(v,u)=0,YueU}

The analysis for orthogonal complement for vector spaces over C is quite similar as

what we have studied in MAT2040.
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Proposition 10.1 1. U* is a subspace of V
2. UnU* ={0}
3. U C U, implies Uy < U;-.

Proof. 1. Suppose that vq,v; € U+, where a,b € K (K =C or R), then for all u € U,

(avq + bvy,u) = a(vy,u) + b{vy,u)

=a-0+b-0=0

Therefore, avi + bv, € U+.
2. Suppose that u € U N U*, then we imply (u,u) = 0. By the positive-definiteness of
inner product, u = 0.

3. The statement (3) is easy.

Proposition 10.2 1. If dim(V) <coand U <V, thenV=U & U+

2. f U,W <V, then

U+wW)yr=Utnwt
Unw)y- 22U+ +Ww+

(UH*tou

Moreover, if dim(V) < oo, then these are equalities.

Proof. 1. Suppose that {vy,...,vi} forms a basis for U, and by basis extension, we
obtain {v1,...,Vk,Vii1,...,V,} is a basis for V.
By Gram-Schmidt Process, any finite basis induces an orthonormal basis.
Therefore, suppose that {ej,...,ex} forms an orthonormal basis for U, and
{eis1,...,e,} forms an orthonormal basis for U+.
It's easy to show V = U + U* using orthonormal basis.

2. (a) The reverse part (U + W) 2 U+ N W+ is trivial; for the forward part, suppose
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v e U+ W), then

v,u+w)=0,VuelU, weW

Taking u = 0 in the equality above gives (v,w) =0, i.e., v € U*. Similarly,
vew.

(b) Follow the similar argument as in (2a). If dim(V) < co, then write down the
orthonormal basis for U+ + W+ and (U N W)*.

(c) Follow the similar argument as in (2a). If dim(V) < oo, then

V=Ute U H)=UsU".

Therefore, (U+)* =U.

Proposition 10.3  The mapping ¢ : V — V* maps U* <V injectively to Ann(U) < V*. If

dim(V) < oo, then U+ = Ann(U) as R-vector spaces

Proof. The injectivity of ¢ has been shown at the beginning of this lecture. For any

v e U+, we imply ¢,(u) =0,Yu e U, ie., ¢, € Ann(U).
Therefore, ¢(U*) < Ann(U).

Provided that dim(V) < oo, by (1) in proposition (10.2),

dim(U) + dim(U*) = dim(V)

Since dim(U) + dim(Ann(U)) = dim(V), we imply dim(U+) = dim(Ann(0)).
Moreover,

¢: U — Ann(U)

is an isomorphism between R-vector spaces U+ and Ann(U). ]
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10.2.2. Adjoint Map

Motivation. Then we study the induced mapping based on a given linear operator
T, denoted as T’. This induced mapping essentially plays the similar role as taking the

Hermitian for a complex matrix.

Notation. Previously we have studied the adjoint of 7:V — W, denoted as T* : W* —
V*. However, from now on, we use the same terminalogy but with different meaning. If
T :V — V is a linear operator, then the adjoint of T is the linear operator 7% : W* — V*

defined as follows.

Definition 10.6 [Adjoint] Let 7:V — V be a linear operator between inner product

spaces. The adjoint of T is defined as 7’ : V — V satisfying

(T'(v),w) =(v,T(w)), YweV (10.1)

Proposition 10.4  If dim(V) < oo, then T” exists, and it is unique. Moreove, T’ is a linear

map.
Proof. Fix any v € V. Consider the mapping
ay w5 T(w) = (v, T(w))

This is a linear transformation from V to F, i.e., @, € V*
By Riesz representation theorem, ¢ is an isomorphism from V to V*. Moreover,

#(T’(v)) = a,. Therefore, for any «, € V*, there exists a vector 7’(v) € V such that
HT'(v)=ayeV”

Or equivalently, ¢7)(w) = ay(w),Yw €V, ie., (T'(v),w) = (v, T(w)).
Henceforce, from v we have constructed 7”(v) satisfying (10.1). Now define 7" : V —
Vbyv—=T/(v).
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e Since the choice of T7(v) is unique by the injectivity of ¢, T’ is well-defined.

e Now we show T’ is a linear transformation: Let vi,vo € V,a,be K. ForallweV,

we have
(T’ (av1 + bvy),w) = {av1 + bv,, T(w))
= d<V1,T(W)> + E<V2,T(W)>
=a(T'(v1),w) + b(T'(v2),w)
= (aT’(v1) + bT'(v2), w)
Therfore,

(T’(av1 + sz) - [aT’(vl) + bT’(Vz)],W) =0, YweV

By the non-degeneracy of inner product,

T’(CIV1 + bVQ) - [aT'(V1) + bT,(VQ)] = 0,

i.e., T'(avy + bvy) = aT’(v1) + bT’(v3)

= Example 10.2 Let V =1R", (-,-) as the usual inner product. Consider the matrix-

multiplication mapping

T: V>V

T(v)= Av

Then (T’(v),w) = (v, T(w)) implies

(T’(v)'w = (v, Aw)
=viAw

=(ATv)Tw

Therfore, T’(v) = ATv. .
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Proposition 10.5 LetT:V — V be a linear transformation, V a inner product space.

Suppose that 8 = {ey,...,e,} is an orthonormal basis of V, then

(T"),8=(T)8,8)"

Proof. Suppose that (T)g, g = (a;j), where T(e;) = 3}/ _; ax;ex, then

n

(e;,T(ej)) = e, Z agjer)

=1
n

= Zakj<eirek>
=1

= a;

Also, suppose (T’)g,8 = (b;j), we imply T'(e;) = 3.} _, bijex, which follows that
(e:,T'(ej)) = b; = (T"(e;),e;) = bij = (e}, T(e;)) = byj,

ie., aj = b;j. ]

Rr) Proposition (10.5) does not hold if 8 is not an orthonormal basis.
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