
Chapter 10

Week10

10.1. Monday for MAT3040

10.1.1. Inner Product Space
• Symmetric: F(uuu,www) = F(www,uuu),8uuu,www

• Non-degenerate: F(uuu,www) = 0,8www implies uuu = 000

• Positive definite: F(vvv,vvv) > 0,8vvv , 000

Classification. When we say V be a vector space over F, we treat ↵ 2 F as a scalar.

Definition 10.1 [Sesqui-linear Form] Let V be a vector space over C. A sesquilinear

form on V is a function F : V ⇥V ! C such that

1. F(uuu + vvv,www) = F(uuu,www) + F(vvv,www)

2. F(uuu,vvv + www) = F(uuu,vvv) + F(uuu,www)

3. F(�vvv,www) = F(vvv,�www) = �F(vvv,www),8� 2 C

In this case, we say F is conjugate symmetric if

F(vvv,www) = F(www,vvv), 8vvv,www 2 V .

The definition for non-degenerateness, and positve definiteness is the same as that in

bilinear form. ⌅

R In the sesquilinear form, why there is a �̄ shown in condition (3)?
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Partial Answer: We want our F to be positive definite in many cases:

• Suppose that F(vvv,vvv) > 0 and we do not have �̄ in sesquilinear form F, it

follows that

F(ivvv, ivvv) = i2F(vvv,vvv) = �F(vvv,vvv) < 0

As a result, there will be no positive bilinear form for vector space over

C.

Therefore, �̄ is essential to guarantee that we have a positive definite form on

vector space over C, i.e.,

F(ivvv, ivvv) = īiF(vvv,vvv) = F(vvv,vvv)

⌅ Example 10.1 Consider V = C
n, and a basic sesquilinear form is the Hermitian inner

product:

F(vvv,uuu) = vvvHuuu =
✓
v̄1 · · · v̄n
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In this case, we do not have symmetric property F(vvv,www) = F(www,vvv) any more, instead, we

have the conjugate symmetric property F(vvv,www) = F(www,vvv). ⌅

Definition 10.2 [Inner Product] A real (complex) vector space V with a bilinear (sesquilin-

ear) form with symmetric (conjugate symmetric) and positive definite property is called

an inner product on V . Any vector space equipped with inner product is called an inner

product space. ⌅

Notation. We write h·, ·i instead of F(·, ·) to denote inner product.

Definition 10.3 [Norm] The norm of a vector vvv is kvvvk =
p
hvvv,vvvi. ⌅

R As a result, k↵vvvk =
p
h↵vvv,↵vvvi =

p
↵̄↵hvvv,vvvi =

p
|↵ |2hvvv,vvvi = |↵ |kvvvk.
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The norm is well-defined since hvvv,vvvi � 0 (positive definiteness of inner prod-

uct).

Definition 10.4 [Orthogonal] We say a family of vectors S = {vvvi | i 2 I} is orthogonal if

hvvvi,vvv ji = 0, 8i , j

If furthermore hvvvi,vvvii = 1,8i, then we say S is an orthonormal set. ⌅

R

1. The Cauchy-Scharwz inequality holds for inner product space:

|huuu,vvvi |  kuuukkvvvk, 8uuu,vvv 2 V .

Proof. The proof for huuu,vvvi 2 R is the same as in MAT2040 course. Check

Theorem (6.1) in the note

https://walterbabyrudin.github.io/information/Notes/MAT2040.pdf

However, for huuu,vvvi 2 C \ R, we need the re-scaling technique:

Let www = 1
huuu,vvvi

uuu, then hwww,vvvi 2 R:

hwww,vvvi = h 1
huuu,vvvi

uuu,vvvi =
 

1
huuu,vvvi

!
huuu,vvvi = 1

huuu,vvvi huuu,vvvi = 1.

Applying the Cauchy-Scharwz inequality for hwww,vvvi 2 R gives

�����h
1

huuu,vvvi
uuu,vvvi

����� = |hwww,vvvi |

 kwwwkkvvvk =
�����

1
huuu,vvvi

uuu

����� kvvvk

Or equivalently, ���� 1
huuu,vvvi

���� |huuu,vvvi | 
�����

1
huuu,vvvi

����� kuuukkvvvk
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Since
��� 1
huuu,vvvi

��� = ��� 1
huuu,vvvi

���, we imply

|huuu,vvvi |  kuuukkvvvk

⌅

2. The triangle inequality also holds for inner product process:

kuuu + vvvk  kuuuk + kvvvk

3. The Gram-Schmidt process holds for finite set of vectors: let S = {vvv1, . . . ,vvvn}

be (finite) linearly independent. Then we can construct an orthonormal

set from S:

www1 = vvv1, wwwi+1 = vvvi+1 �
hvvvi+1,www1i
kwww1k2 � hvvvi+1,www2i

kwww2k2 � · · ·� hvvvi+1,wwwii
kwwwi k2 , i = 1, . . . ,n�1

Then after normalization, we obtain the constructed orthonormal set.

Consequently, every finite dimensional inner product space has an

orthonormal basis.

10.1.2. Dual spaces

Theorem 10.1 — Riesz Representation. Consider the mapping

� : V ! V⇤

with vvv 7! �vvv
where �vvv(w) = hvvv,wi, 8w 2 V

Then the mapping � is well-defined and it is an R-linear transformation.

Moreover, if V is finite dimensional, then � is an isomorphism.

The R-linear transformation V ! V⇤ means that, when V ,V⇤ are vector space over

R, the R-linear transformation deduces into exactly the linear transformation.
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R The R-linear transformation V !V⇤ is not necessarily linear if V ,V⇤ are vector

spaces over C.

However, we can transform a vector space over C into a vector space over R:

• For example, suppose that {vvv1, . . . ,vvvn} is a basis of V over C, i.e.,

vvv =
n’
j=1

↵jvvv j

where ↵j = pj + iqj ,8pj , qj 2 R, then

vvv =
’
j

pjvvv j +
’
j

qj(ivvv j), pj , qj 2 R

Therefore, {vvv1, . . . ,vvvn, ivvv1, . . . , ivvvn} forms a basis of V over R.

Note that ivvv1 cannot be considered as a linear combination of vvv1 over R, but

a linear combination of vvv1 over C.

In particular, if � : V ! V⇤ is a R-linear transformation, then

�(ivvv) , i�(vvv), but �(2vvv) = 2�(vvv).

Proof. 1. Well-definedness: We need to show �vvv 2 V⇤, i.e., for scalars a, b,

�vvv(awww1 + bwww2) = hvvv,awww1 + bwww2i = ahvvv,www1i + bhvvv,www2i = a�vvv(www1) + b�vvv(www2)

Therefore, �vvv 2 V⇤.

2. R-linearity of �: it suffices to show

�(cvvv1 + dvvv2) = c�(vvv1) + d�(vvv2), 8c, d 2 R,vvv1,vvv2 2 V .

For all www 2 V , we have

�cvvv1+dvvv2(www) = hcvvv1 + dvvv2,wwwi = chvvv1,wwwi + dhvvv2,wwwi = c�vvv1(www) + d�vvv2(www)
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where the second equality holds because c, d 2 R.

Therefore,

�(cvvv1 + dvvv2) = c�(vvv1) + d�(vvv2).

⌅
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