Chapter 10

Week10

10.1. Monday for MAT 3040

10.1.1. Inner Product Space
e Symmetric: F(u,w) = F(w,u),Yu,w
e Non-degenerate: F(u,w)=0,Vw implies u =0
e Positive definite: F(v,v) >0,Yv #0

Classification. When we say V be a vector space over [, we treat @ € FF as a scalar.

Definition 10.1 [Sesqui-linear Form] Let V be a vector space over C. A sesquilinear

form on V is a function F :V XV — C such that

1. Fu+v,w)=F(u,w)+ F(v,w)
2. F(u,v +w)=F(u,v)+ F(u,w)

3. F(lv,w)=F(v,Aw) = AF(v,w),¥A1 e C

In this case, we say F is conjugate symmetric if
Fv,w)=F(w,v), Yv,weV.

The definition for non-degenerateness, and positve definiteness is the same as that in

bilinear form. -

) In the sesquilinear form, why there is a A shown in condition (3)?
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Partial Answer: We want our F to be positive definite in many cases:

e Suppose that F(v,v) >0 and we do not have 1 in sesquilinear form F, it
follows that

F(iv,iv) = i’F(v,v) = —=F(v,v) <0

As a result, there will be no positive bilinear form for vector space over

C.

Therefore, A is essential to guarantee that we have a positive definite form on

vector space over C, i.e.,

F(iv,iv) =iiF(v,v) = F(v,v)

= Example 10.1 Consider V = C", and a basic sesquilinear form is the Hermitian inner

product:

n
F(v,u):vHuz(v‘l v‘n) : =ZViWi

Wn

In this case, we do not have symmetric property F(v,w) = F(w,v) any more, instead, we

have the conjugate symmetric property F(v,w) = F(w,v). .

Definition 10.2  [Inner Product] A real (complex) vector space V with a bilinear (sesquilin-
ear) form with symmetric (conjugate symmetric) and positive definite property is called
an inner product on V. Any vector space equipped with inner product is called an inner

product space. .

Notation. We write (-,-) instead of F(-,-) to denote inner product.

Definition 10.3 [Norm] The norm of a vector v is ||[v|| = +/(v, V). .

R) Asaresult, [lav| = \/(av,a/v> = \/c’ya(v,v) = \/la/lz(v,v) = |a|||v]|.
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The norm is well-defined since (v,v) > 0 (positive definiteness of inner prod-

uct).
Definition 10.4 [Orthogonal] We say a family of vectors S = {v; | i € I} is orthogonal if
(wi,vj) =0, Vi#j

If furthermore (v;,v;) =1,Vi, then we say S is an orthonormal set. .

1. The Cauchy-Scharwz inequality holds for inner product space:
[(w,v)| < [lulll[v]l, Yu,v € V.

Proof. The proof for (u,v) € R is the same as in MAT2040 course. Check

Theorem (6.1) in the note
https://walterbabyrudin.github.io/information/Notes/MAT2040.pdf

However, for (u,v) € C \ R, we need the re-scaling technique:

Let w = ——u, then (w,v) € R:
(u,v)

(w,v) ={

;u,v) = ( ! )(u,v) = L(u,v) =1.
(u,v) {u,v)

(u,v)

Applying the Cauchy-Scharwz inequality for (w,v) € R gives

( u,v) = [(w,v)l

(u,v)
< |lwllllv]l = u||l[vl|

(u,v)
Or equivalently,
1 1
u,v)| <|——|||ulll|lv
v [{u,v)| ‘(u’w [|ze[[|v]]
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1
(u,v)

_ ’_1
)

Since , we imply

[, v)| < Jlull][v]

2. The triangle inequality also holds for inner product process:

[+ v < [[ull + vl

3. The Gram-Schmidt process holds for finite set of vectors: let S = {v1,...,v,}
be (finite) linearly independent. Then we can construct an orthonormal

set from S:
Vir1,w1)  (Vie,w2) Vi, Wa)

", i=1,...,n-1
w112 w212 w7

Wi1=V1, Wiy1=Vi41—

Then after normalization, we obtain the constructed orthonormal set.
Consequently, every finite dimensional inner product space has an

orthonormal basis.

10.1.2. Dual spaces

Theorem 10.1 — Riesz Representation. Consider the mapping

o VoVvr
with v ¢,

where ¢, (w)=(v,w), YweV

Then the mapping ¢ is well-defined and it is an R-linear transformation.

Moreover, if V is finite dimensional, then ¢ is an isomorphism.

The R-linear transformation V — V* means that, when V,V* are vector space over

R, the R-linear transformation deduces into exactly the linear transformation.
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R) The R-linear transformation V — V* is not necessarily linear if V,V* are vector

spaces over C.

However, we can transform a vector space over C into a vector space over IR:

e For example, suppose that {vy,...,v,} is a basis of V over C, i.e,,
n
v = ZCXJVJ‘
j=1
where a; = p; +iq;,Vpj,q; € R, then
V= ZP}'VJ + Z%’(ivj)/ Pi,q; €R
J J

Therefore, {v4,...,v,,iv1,...,iv,} forms a basis of V over IR.

Note that iv; cannot be considered as a linear combination of v; over IR, but

a linear combination of v over C.

In particular, if ¢ : V — V* is a R-linear transformation, then

o(iv) £ig(v), but ¢(2v) = 2¢(v).

Proof. 1. Well-definedness: We need to show ¢, € V*, i.e., for scalars a, b,
¢v(awr + bwa) = (v,awy + bwa) = a(v,w1) + b(v,w2) = agy(w1) + by (w2)

Therefore, ¢, € V*.

2. R-linearity of ¢: it suffices to show
d(cv1 +dvy) = cop(vi) +dop(vy), Ve, deR, vy, vy eV.
For all w € V, we have

Devirav, (W) = (cvi +dvy, w) = c(vy,w) + d(v2, W) = cdy, (W) + dby, (W)

249



where the second equality holds because c,d € R.

Therefore,

#(cv +dva) = ch(v1) + dp(v2).
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