9.5. Wednesday for MAT3006

9.5.1. Remarks on Measurable function

Proposition 9.6 Let f_n be a sequence of measurable functions $f_n : \mathbb{R} \to [-\infty, \infty]$. Then the functions

 $\sup_{n\in\mathbb{N}} f_n(x)$, $\inf_{n\in\mathbb{N}} f_n(x)$, $\lim_{n\to\infty} \sup_{x\to\infty} f_n(x)$, $\lim_{n\to\infty} \inf_{x\to\infty} f_n(x)$

are measurable.

Proof.

$$\left(\sup_{n\in\mathbb{N}}f_n\right)^{-1}((a,\infty]) = \left\{x\in\mathbb{R} \mid \sup_n f_n(x) > a\right\}$$
$$= \left\{x\in\mathbb{R} \mid f_n(x) > a \text{ for some } a\right\}$$
$$= \bigcup_{n\in\mathbb{N}}f_n^{-1}((a,\infty])$$

which is measurable due to the measurability of f_n .

The proof for the measurablity of inf_n f_n(x), lim_{n→∞} sup f_n(x), lim_{n→∞} inf f_n(x) is directly by applying the formula

$$\inf f_n(x) = -(\sup(-f_n(x)))$$
$$\lim_{n \to \infty} \sup f_n(x) = \lim_{m \to \infty} (\sup_{n \ge m} f_n(x)) = \inf_{m \in \mathbb{N}} (\sup_{n \ge m} f_n(x))$$
$$\lim_{n \to \infty} \inf f_n(x) = -\lim_{n \to \infty} \sup(-f_n(x))$$

Corollary 9.5 If $\{f_n\}$ is measurable, and $f_n(x)$ converges to f(x) pointwisely a.e., then f is measurable.

Proof. By proposition (9.3), w.l.o.g., $f_n(x)$ conveges to f(x) pointwisely, which follows

that

$$f(x) := \lim_{n \to \infty} f_n = \lim_{n \to \infty} \sup f_n(x)$$

i.e., *f* is measurable due to the measurability of $\lim_{n\to\infty} \sup f_n(x)$.

9.5.2. Lebesgue Integration

Definition 9.9 [Simple Function] A function $\phi : \mathbb{R} \to \mathbb{R}$ is simple if

- ϕ is measurable and
- $\{\phi(x) \mid x \in \mathbb{R}\}$ takes finitely many values.

More precisely, if the simple function ϕ takes distinct values $\alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}$ on disjoint non-empty sets $A_1, \ldots, A_k \subseteq \mathbb{R}$, then

$$\phi = \sum_{i=1}^k \alpha_i \mathcal{X}_{A_i}$$

Note that A_i 's are measurable since $\phi^{-1}(\{\alpha_i\}) = A_i$

- 1. All functions written in the form $\psi = \sum_{i=1}^{\ell} \beta_i \mathcal{X}_{B_i}$, where B_i 's are measurable, are simple; All simple functions can be expressed as the form $\psi = \sum_{i=1}^{\ell} \beta_i \mathcal{X}_{B_i}$ (where B_i 's are disjoint) uniquely, up to permutation of terms. This is called the canonical form.
- 2. If ϕ_1, ϕ_2 are simple, then so are

$$\phi_1 + \phi_2, \quad \phi_1 \cdot \phi_2, \quad \alpha \cdot \phi, \max(\phi_1, \phi_2), \quad h \circ \phi.$$

for all function *h*.

Definition 9.10 [Lebesgue integral for Simple Function] Given a simple function with the canonical form $\phi := \sum_{i=1}^{k} \alpha_i \mathcal{X}_{\mathcal{A}_i}$, • The Lebesgue integral for ϕ (over \mathbb{R}) is

$$\int \phi \, \mathrm{d}m = \sum_{i=1}^k \alpha_i m(A_i),$$

• The Lebesgue integral for ϕ over a measurable set E is

$$\int_E \phi \, \mathrm{d}m = \int \phi \cdot \mathcal{X}_E \, \mathrm{d}m = \sum_{i=1}^k \alpha_i m(A_i \cap E)$$

Proposition 9.7 For any simple function $\phi = \sum_{i=1}^{\ell} \beta_i \mathcal{X}_{B_i}$, where B_i 's are not necessarily disjoint, we still have

$$\int \phi \, \mathrm{d}m = \sum_{i=1}^{\ell} \beta_i m(B_i),$$

$$\int (\phi + \psi) \, \mathrm{d}m = \int \phi \, \mathrm{d}m + \int \psi \, \mathrm{d}m, \quad \text{where } \psi \text{ is another simple function}$$

$$\int \phi \, \mathrm{d}m \leq \int \psi \, \mathrm{d}m, \qquad \text{provided that } \phi \leq \psi.$$

Proof. It suffices to show the first equality. w.l.o.g., suppose $\phi = \beta_1 \mathcal{X}_{B_1} + \beta_2 \mathcal{X}_{B_2}$, which can be reformulated as the canonical form:

$$\phi = (eta_1 + eta_2)\mathcal{X}_{B_1 \cap B_2} + eta_1\mathcal{X}_{B_1 \cap B_2^c} + eta_2\mathcal{X}_{B_1^c \cap B_2}$$

Then we can take the Lebesgue integration for ϕ :

$$\int \phi \, \mathrm{d}m = (\beta_1 + \beta_2)m(B_1 \cap B_2) + \beta_1 m(B_1 \cap B_2^c) + \beta_2 m(B_1^c \cap B_2),$$

which is equal to $\beta_1 m(B_1) + \beta_2 m(B_2)$ due to the caratheodory property (definition (8.2))

Definition 9.11 [Lebesgue integral for Measurable Function] Let f be a measurable function $f : \mathbb{R} \to [0, \infty]$. Then the Lebesgue integral of f is given by:

$$\int f \, \mathrm{d}m = \sup\left\{ \int \phi \, \mathrm{d}m \, \middle| \, 0 \le \phi \le f, \phi \text{ is simple} \right\}$$
(9.1)

We say f is integrable if $\int f dm < \infty$.

(\mathbf{R})

• It's not appropriate if we try to define the Lebesgue integral by

$$\int f \, \mathrm{d}m = \inf \left\{ \int \phi \, \mathrm{d}m \, \middle| \, 0 \le f \le \phi, \phi \text{ is simple} \right\}$$
(9.2)

The problem is due to the function $f(x) = \frac{1}{\sqrt{x}}$ on (0,1). Note that the function values can be arbitrarily large.

Since a simple function takes only finitely many values, every simple function that is bounded below by f has to be infinite on a set of non-zero measure.

Therefore, the integral using your suggested infimum definition would be ∞ , whereas the usual Lebesgue integral would have a finite value.

• Also, one can try to define $\int f dm$ for non-measurable function f. The problem is that

$$\int (f+g) \, \mathrm{d}m \neq \int f \, \mathrm{d}m + \int g \, \mathrm{d}m \text{ in general}$$

We will see the detailed reason later.

Proposition 9.8 • The formula (9.1) and (9.2) matches with each other for any simple functions $\phi \ge 0$.

• For $\alpha \geq 0$,

$$\int \alpha f \, \mathrm{d}m = \alpha \int f \, \mathrm{d}m$$

• If
$$0 \le f \le g$$
, then

$$\int f \, \mathrm{d}m \leq \int g \, \mathrm{d}m$$

Proof. omitted.

Proposition 9.9 — Markov Inequality. Suppose that $f : \mathbb{R} \to [0,\infty]$ is measurable, then

$$m(f^{-1}[\lambda,\infty]) \le \frac{1}{\lambda} \int f \,\mathrm{d}m$$

Corollary 9.6 If $f : \mathbb{R} \to [0,\infty]$ is integrable, then $m(f^{-1}\{\infty\}) = 0$, i.e., f is finite a.e.

Proof.

$$m(f^{-1}\{\infty\}) \le m(f^{-1}[\lambda,\infty]) \le \frac{1}{\lambda} \int f \, \mathrm{d}m, \, \forall \lambda \ge 0.$$

Since $\int f dm$ is finite, we imply $\frac{1}{\lambda} \int f dm$ can be arbitrarily small, i.e., $m(f^{-1}\{\infty\}) = 0$.

_