8.4. Wednesday for MAT3006

Reviewing.

- All null sets are measurable
- If $E \subseteq \mathbb{R}$ is measurable, then $E^c := R \setminus E$ is measurable.
- E_i is measurable implies $\cup_{i=1}^n E_i$ is measurable.

8.4.1. Remarks on Lebesgue Measurability

Proposition 8.5 If E_i is measurable for $\forall i \in \mathbb{N}$, then so is $\bigcup_{i=1}^{\infty} E_i$. Moreover, if further E_i 's are pairwise disjoint, then

$$m^*\left(\bigcup_{i=1}^{\infty}E_i\right) = \sum_{i=1}^{\infty}m^*(E_i)$$

Proof. • Consider the case where E_i 's are measurable, pairwise disjoint first. For all subsets *A* ⊆ ℝ, and all *n* ∈ ℕ,

$$m^*(A) = m^*(A \cap (\bigcup_{i=1}^n E_i)) + m^*(A \cap (\bigcup_{i=1}^n E_i)^c)$$
(8.4a)

$$= [m^*(A \cap (\cup_{i=1}^n E_i) \cap E_n) + m^*(A \cap (\cup_{i=1}^n E_i) \cap E_n^c)] + m^*(A \cap (\cup_{i=1}^n E_i)^c)$$
(8.4b)

$$= [m^*(A \cap E_n) + m^*(A \cap (\bigcup_{i=1}^{n-1} E_i)] + m^*(A \cap (\bigcup_{i=1}^n E_i)^c)$$
(8.4c)

where (8.4a) is by the measurability of $\bigcup_{i=1}^{n} E_i$; (8.4b) is by the measurability of E_n ; (8.4c) is by direct calculation.

Proceeding these trick similarly, we obtain:

$$m^*(A) = [m^*(A \cap E_n) + m^*(A \cap (\bigcup_{i=1}^n E_i)^c)] + m^*(A \cap (\bigcup_{i=1}^{n-1} E_i)]$$
(8.5a)

$$=\sum_{\ell=1}^{n} m^{*}(A \cap E_{\ell}) + m^{*}(A \cap (\cup_{i=1}^{\ell} E_{i})^{c})$$
(8.5b)

$$\geq \sum_{\ell=1}^{n} m^* (A \cap E_{\ell}) + m^* (A \cap (\cup_{i=1}^{\infty} E_i)^c)$$
(8.5c)

for any $n \in \mathbb{N}$, where (8.5c) is by lower bounding $(\bigcup_{i=1}^{\ell} E_i)^c \supseteq (\bigcup_{i=1}^{\infty} E_i)^c$. Taking $n \to \infty$ in (8.5c), we imply

$$m^*(A) \ge \sum_{\ell=1}^{\infty} m^*(A \cap E_\ell) + m^*(A \cap (\bigcup_{i=1}^{\infty} E_i)^c)$$
 (8.5d)

$$\geq m^*(\cup_{i=1}^{\infty}(A \cap E_i)) + m^*(A \cap (\cup_{i=1}^{\infty}E_i)^c)$$
(8.5e)

$$= m^*(A \cap (\cup_{i=1}^{\infty} E_i)) + m^*(A \cap (\cup_{i=1}^{\infty} E_i)^c)$$
(8.5f)

where (8.5e) is by the countable sub-addictivity of m^* . Therefore, $\bigcup_{i=1}^{\infty} E_i$ is measurable.

• Moreover, taking $A = \bigcup_{i=1}^{\infty} E_i$ in (8.5d) gives

$$m^*(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} m^*(E_i) + m^*(\emptyset) = \sum_{i=1}^{\infty} m^*(E_i) + 0.$$

Now suppose that *E_i*'s are measurable but not necessarily pairwise disjoint. We need to show ∪_{i=1}[∞] *E_i* is measurable. The way is to construct the disjoint sequence of sets first:

$$\begin{cases} F_1 = E_1, \\ F_{k+1} = E_k \setminus \left(\bigcup_{i=1}^k E_i \right), \ \forall k > 1 \end{cases} \implies \bigcup_{i=1}^\infty F_i = \bigcup_{i=1}^\infty E_i$$

It's clear that F_i 's are pairwise disjoint and measurable, which implies $\bigcup_{i=1}^{\infty} E_i = \bigcup_{i=1}^{\infty} F_i$ is measrable. The proof is complete.

Notations. We denote \mathcal{M} as the collection of all **(Lebesgue) measurable** subsets of \mathbb{R} , and

$$m(E) = m^*(E), \quad \forall E \in \mathcal{M}$$

8.4.2. Measures In Probability Theory

Definition 8.8 [σ -Algebra]

- Let Ω be any set, and $\mathbb{P}(\Omega)$ (power set) denotes the collection of all subsets of Ω
- A family of subsets of Ω , denoted as \mathcal{T} , is a σ -algebra if it satisfies
 - 1. $\emptyset, \Omega \in \mathcal{T}$ 2. If $E_i \in \mathcal{T}$ for $\forall i \in \mathbb{N}$, then $\bigcup_{i=1}^{\infty} E_i \in \mathcal{T}$ (and therefore $\bigcap_{i=1}^{\infty} E_i \in \mathcal{T}$).

Definition 8.9 [Measure] A measure on a σ -algerba (Ω, \mathcal{T}) is a function $\mu: \mathcal{T} \to [0, \infty]$ such that

- $\mu(\emptyset) = 0$ $\mu(\bigcup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$ whenever E_i 's are pairwise disjoint in \mathcal{T} .

As a result, $(\Omega, \mathcal{T}, \mu)$ is called a measurable space.

1. Let Ω be any set, $\mathcal{T} = \mathcal{M}$, and $\mu(E) = |E|$ (the number of elements Example 8.5 in E). Then $(\Omega, \mathbb{P}(\Omega), \mu)$ is a measure space, and μ is called a counting measure on Ω .

Definition 8.10 [Borel σ -algebra] Let **B** be a collection of all intervals in \mathbb{R} . Then there is a **unique** σ -algebra ${\mathcal B}$ of ${\mathbb R}$, such that

- 1. $B \subseteq B$ 2. For all σ -algebra \mathcal{T} containing B, we have $\mathcal{B} \subseteq \mathcal{T}$

This $\mathcal B$ is called a **Borel** σ -algebra

(\mathbf{R})

1. In particular, $C_i \in \mathcal{B}$ implies $\cup_{i=1}^{\infty} C_i$ and $\cap_{i=1}^{\infty} C_i \in \mathcal{B}$.

- 2. $\mathcal{B} \subseteq \mathcal{M}$, since $\mathbf{B} \subseteq \mathcal{M}$ and \mathcal{M} is a σ -algebra.
- 3. However, M and B are not equal. The element $C \in B$ is called **Borel measurable subsets**

Definition 8.11 [complete] Let $(\Omega, \mathcal{T}, \mu)$ be a measurable space. Then we say it is **complete** if for any $E \in \mathcal{T}$ with $\mu(E) = 0$, $N \subseteq E$ implies $N \in \mathcal{T}$. (and therefore $\mu(N) = 0$)

Example 8.6 1. (\mathbb{R}, μ, m^*) is complete.

Reason: if $m^*(E) = 0$, then $m^*(N) = 0$, $\forall N \subseteq E$

2. (\mathbb{R}, μ, m) is complete.

Reason: the same as in (1)

3. However, $(\mathbb{R}, \mathcal{B}, m \mid_{\mathcal{B}})$ is not complete. (left as exercise)

Then we study the difference between \mathcal{B} and \mathcal{M} :

Definition 8.12 [Completion] Let $(\Omega, \mathcal{T}, \mu)$ be measurable space. The completion of $(\Omega, \mathcal{T}, \mu)$ with respect to μ is the smallest complete σ -algebra containing \mathcal{T} , denoted as $\overline{\mathcal{T}}$. More precisely,

$$\overline{\mathcal{T}} = \{ G \cup N \mid G \in \mathcal{T}, N \subseteq F \in \mathcal{T}, \text{with } \mu(F) = 0 \}$$

e.g., take $G = \emptyset \in \mathcal{T}$. For all $F \in \mathcal{T}$ such that $\mu(F) = 0$, $N \subseteq F$ implies $N \in \overline{\mathcal{T}}$.

R If further define $\overline{\mu}:\overline{\mathcal{T}}\to[0,\infty]$ by

$$\overline{\mu}(G\cup N)=\mu(G),$$

then $(\Omega, \overline{\mathcal{T}}, \overline{\mu})$ is a measurable space.

Theorem 8.3 The completion of $(\mathbb{R}, \mathcal{B}, m \mid_{\mathcal{B}})$ is $(\mathbb{R}, \mathcal{M}, m)$

R

Another completion of (\mathbb{R}, μ, m) is as follows:

Define $\ell(\{a,b\}) = b - a$ for all intervals $\{a,b\} \in \mathbf{B}$ Then by Caratheodory extension theorem, we can extend $\ell : \mathbf{B} \to [0,\infty]$ to $\ell : \mathcal{B} \to [0,\infty]$.

Complete $\ell : \mathcal{B} \to [0,\infty]$ to $\overline{\ell} : \mathcal{M} \to [0,\infty]$. Then $\overline{\ell} = m$ as in our course.