8.2. Monday for MAT 3006

Reviewing. We define the outer measure of a subset E C R to be

)|E C U I, I,,’s are open mtervals}
n=1

m*(E) = mf{zm I,)

n=1

One Special Property of Outer Measure:

m* nlE Z

8.2.1. Remarks for Outer Measure

We want to make a special hyphothesis become true: If E,,’s are disjoint, then
m*(Us1E,) = E m*(Ey) (8.3)
However, (8.3) does not necessary hold for a sequence of disjoint subsets {E, }. One
counter-example is shown in Example (8.2).
m Example 8.2 [Vitali Set] Suppose that A C [0,1] satisfies the following properties:
e For any x € IR, there exists ¢ € Q such that x +g € A.

e If x,y € A such that x #y, then x —y £ Q

In other words, the group IR is partitioned into the cosets of its addictive subgroup Q, and
the properties above say that A contains exactly one member of each coset of Q. The

existence of such A relies on the Axiom of Choice. Moreover, we imply:

® [0,1] € Uge-1,1)n@(A — q): since Vx € [0,1], there exists ¢ € Q s.t. x + 4 € A,

which implies x € A = g. Moreover, we can bound the possible region of g:

0<x+¢g<1—=— —x<g<1l—-x=— —-1<¢g<1
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® Uge-11n@(A —¢) € [—1,2]: elements in A — g are of the form x —gq,x € [0,1],g €
[—1,1], and therefore x — g € [—1,2].

e The sets (A —q) are disjoint as g varies, i.e., (A—q1) N (A—q2) =Q,Vq1 # 2 €
[—1,1] N Q: Suppose on the contrary that there exists y € (A —g1) N (A — q2),

which follows
Y+tauy+peAy+a#Fy+qp = Y+q)-yY+9p)=0-92¢Q

Suppose on the contrary that (8.3) holds for {A — g | Vg € [—1,1] N Q}, then

m( U (Aq))— [Z m(A-q)= ), 6 m'(A), (84)
q¢€( q€

-1,11NnQ -1,1]nQ ge[-1,1]1NnQ

where the second equality is because that m*(A — q) = m*(A),Vq. However,

gel-11

1m*<[o,1]><m*< U (Aq>)<m*<[1,z]>3 (85)
InQ

From (8.4) we derive the m* (qu[fl,l]ﬁQ(A — q)) can either be 0 or co, which is a

contradiction. "

8.2.2. Lebesgue Measurable

Therefore, (8.5) does not hold for some bad subsets of IR, which are sets cannot be

explicitly described. Let’s focus on sets with good behaviour only:

Definition 8.2 [Carathedory Property] A subset E C R is measurable if
m*(A) =m*(ANE)+m*(A\E) (8.6)
for all subsets A C IR, where E is not assumed to be in A, i.e., A\ E:= ANE". n

r) The equality (8.6) holds if we can show m*(A) > m*(ANE) +m*(A\E).

There are many other equivalent definitions for measurable set E C IR:
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1. For any & > 0, there exists open set U D E such that

m*(U\E)<e

2. Its outer and inner measures are equal:

[ee]

m*(E)=m —sup{Zm

n=1

Note that the inner measure m, admits the inequality

M (U=

me1En) Z , for disjoint E,

r) If ECRR, then for all B O E, we have

m*(B) =m*(BNE)+m*"(B\E)=m"(E)+m*"(B\E):

m*(B \ E) m (E)

Figure 8.1: Illustration for the useful equality (8.7)

Proposition 8.3 1. If E C R is null, then E is measurable
2. If I is any interval, then I is measurable
3. If E is measurable, then E° := R\ E is measurable

4. If E is measurable, then both U ,E; and N, E; are measurable
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Proof. 1. For any subsets A,

m* (ANE)=0
= m*(A)>m*(ANE)+m*(ANE°).
m*(ANES) <m*(A)

2. Take [ = [a,b]. For all A CRR,

e take {I,} such that A C U ,I, and

i m*(I,) <m*(A)+¢ (8.8)
n=1

¢ Note that the m*(A N I) can be upper bounded:

[ee]

ANICUY (I,NI) = m*"(ANI) Z (I, N [a,b])

Similarly, m*(A N I°) can be upper bounded:

ANICCUy 1I,N((—o0,a)U(b,0)) = (G I,N (—oo,a)> U (G I, N (b,00)
n=1 n=1

ie.,

m (ANT) < Y m* (I, N (—e0,a)) +m* (I, N (b,00))

e Therefore,

m*(AﬁI)+m*(AﬂIc)§im*([nﬁ(— a)) +m* (L, N [a,b]) +m*(I,N

n=1
= S (1 (eoe)) = Yo' (1)

<m*(A) +¢,

ie, m*(ANI)+m*(ANI°) <m*(A).

3. Part (3) is trivial.

4. Part (4) is by induction on n: suppose that

e E;is measurable fori=1,...,k+1

221

(b,00))



o E=Uk  E is measurable

By the measurablitiy of Ej,
m (ANEY) =m"(ANE NEgy) +m* (ANE NE,) (8.9)
By the measurablitiy of E,

m*(A) >m*(ANE)+m*(ANE°)
(8.10)
>[m*(ANE)+m" (ANE N Egy)] +m* (ANE N E;,)

It's easy to show

EU(E*NEg41) = EUEgyy,
which implies
m* (AN (EU Expa)) = m™ (AN (EU (E° N Exy)))

=m*((ANE)U(AN(ENErq))) (8.11)

<m*(ANE)+m" (AN (E°N Egy1))

Substituting (8.11) into (8.10) gives
m*(A) 2m* (AN (EUEgy1)) + m* (AN (EU Egtq)),

i.e., E U Ey, is measurable as well.

By the equality

R\ ( n Ez') =CJ<R\Ei),
i=1 i=1

and the result in part (3), one can show N}, E; is measurable as well.

Proposition 8.4 If E; is measurable, then U?? | E; is measurable. Moreover, if E;’s are

disjoint, then

m* (U2, Ei) = ) m" (E;)
i=1
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Note that m*(A) = 0 for Vitali set A: suppose contrary that m*(A) =0, i.e.,

A is null set. Since countably null set is also measurable, together with (8.4),
we imply
m* U Aa-9]=0
g€[-1,1]NnQ
which contradicts to (8.5).
Notations.

1. We will write m(E) = m*(E) for all measurable sets E C R, and therefore
m({a,b}) =m*({a,b}) =b—a
2. The sets E satisfying
m*(A)=m*"(ANE)+m*(ANE")

are called Lebesgue measurable in some other textbooks.
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