5.5. Wednesday for MAT3006

5.5.1. Remarks on Baire Category Theorem

Theorem 5.4 — **Baire Category Theorem.** If (X, d) is complete, and $E_i \subseteq X$ is nowhere dense for $i \in \mathbb{N}$, then

 $\bigcup_{i=1}^{\infty} \overline{E}_i$

contains no open balls.

Definition 5.4 Let (X, d) be a complete metric space.

1. We say $S \subseteq X$ is meager if

 $S = \bigcup_{i=1}^{\infty} E_i$, E_i is nowhere dense

In this case we say S is of first category.

2. $S' \subseteq X$ is comeager if

$$S' = X \setminus S$$
, where S is meager

For example, $\mathbb{Q} = \bigcup_{x \in \mathbb{Q}} \{x\}$ is megre; $\mathbb{R} \setminus \mathbb{Q}$ is comeager.

 (\mathbf{R})

1. By the Baire Category Theorem, $\bigcup_{i=1}^{n} \overline{E}_i$ contains no open balls, i.e.,

$$S := \bigcup_{i=1}^{\infty} E_i \subseteq \bigcup_{i=1}^{\infty} \bar{E}_i$$

contains no open balls.

2. *S'* is comeager implies *S'* is dense in *X*: for $\forall x \in X$, $B_{1/n}(x) \cap S'$ is non-empty, since otherwise $X \setminus S'$ contains a open ball, which is a contradiction. Therefore, $x \in \overline{S'}$.

Proposition 5.7 If a set *S* is meager, it cannot be comeager and vice versa.

Proof. Suppose on contrary that *S* is meager and comeager, then

$$S = \bigcup_{i=1}^{\infty} E_i, \quad E_i \text{ is nowhere dense}$$
$$X \setminus S = \bigcup_{j=1}^{\infty} F_j, \quad F_j \text{ is nowhere dense}$$

Therefore,

$$X = \bigcup_{i=1}^{\infty} E_i \cup \bigcup_{j=1}^{\infty} F_j$$

is a countable union of nowhere desne sets. By applying Baire Category Theorem, *X* has no open balls, which is a contradiction.

R We say $S \subseteq X$ is of **first category** if *S* is meager. Any subset that is not of first category is of **second category**. Therefore, comeager implies second category. We illustrate the relationship above in the figure below:

Note that there are subsets that are **neither meager nor co-meager**.

Example 5.6
 1. Here is another proof of [0,1] is un-countable: Suppose on the contrary that [0,1] is countable, then we imply

$$[0,1] = \bigcup_{n \in \mathbb{N}} \{x_n\}, \text{ for some } x_n.$$

Applying Baire Category Theorem (since [0,1] is complete), $[0,1] = \bigcup_{n \in \mathbb{N}} \{x_n\}$ contains no open balls. However, the open ball $(0.5, 0.7) \subseteq [0,1]$, which is a contradiction.

- 2. The set X := C[a, b] is complete.
 - (a) The set of all nowhere differentiable functions is of 2nd Category in C[a,b].
 (Check Theorem (4.1) in MAT2006) Actually, the set of all nowhere differentiable functions is comeager. The proof for this statement is omitted.
 - (b) Due to the relationship

$$\mathcal{P}[a,b] \subseteq \mathcal{C}^{\infty}[a,b] \subseteq \{f: [a,b] \to \mathbb{R} \mid f \text{ is differentiable somewhere}\}$$

and that the last subset is meager, we imply $\mathcal{P}[a,b]$ and $\mathcal{C}^{\infty}[a,b]$ is meager.

5.5.2. Compact subsets of C[a,b]

Recall that for metrice spaces, the compactness implies closed and bounded, but in general the converse does not hold. We will study extra conditions to make subsets of C[a,b] compact.

Definition 5.5 [(Uniformly) Bounded] The subset S in metric space $(C[a,b],d_{\infty})$ is (uniformly) bounded if there exists M > 0 such that

$$\sup_{f\in S} \|f\|_{\infty} = M$$

In next class, we will show that $K \subseteq C[a, b]$ is compact if and only if K is closed,(uniformly) bounded, and equi-continuous.