5.2. Monday for MAT3006

Our first quiz will be held on this Wednesday.

Reviewing. We have shown that the algebra $\mathcal{A} \subseteq \mathcal{C}(X)$ with separation, non-vanishing property implies $\overline{\mathcal{A}} = \mathcal{C}(X)$.

Now we show that if $\overline{A} = C(X)$, then the algebra A has separation, non-vanishing property:

Suppose on the contrary that A is not separating, i.e., there exists x₁, x₂ ∈ X such that φ(x₁) = φ(x₂), ∀φ ∈ A.
 By the definition of closure, it's clear that for given S ⊆ (X,d), ∀x ∈ S, there exists

a sequence $\{S_n\}$ in *S* such that $S_n \to x$.

Construct $f \in C(X)$ defined by $f(x) = d(x, x_1)$. It follows that

$$f(x_1) = 0$$
, $f(x_2) = d(x_2, x_1) := k > 0$

Now we claim that $f \notin \overline{A}$, since otherwise there exists $\{\phi_n\}$ in A such that $\phi_n \to f$, i.e.,

$$\phi_n(x_1) \to f(x_1), \quad \phi_n(x_2) \to f(x_2), \quad \phi_n(x_1) = \phi_n(x_2), \forall n,$$

i.e., $0 = f(x_1) = f(x_2) > 0$.

2. Suppose on the contrary that \mathcal{A} is not non-vanishing, i.e., there exists some $x_0 \in X$ such that $\phi(x_0) = 0, \forall \phi \in \mathcal{A}$. Construct $g \in \mathcal{C}(X)$ defined by $g(x) = d(x, x_0) + 1$. Following the similar idea, we can show that there does not exist $\phi_n \in \mathcal{A}$ such that $\phi_n \to g$, i.e., $g \notin \overline{\mathcal{A}}$, which is a contradiction.

Example 5.4 1. Let $X \subseteq \mathbb{R}^n$ be a compact space. Then the polynomial ring

 $\mathbb{R}[x_1,\ldots,x_n] = \{ \text{Polynomials in } n \text{ variables with coefficients in } \mathbb{R} \}$

forms a dense set in $\mathcal{C}(X)$.

It's clear that the set $\mathbb{R}[x_1,\ldots,x_n]$ satisfies the separating and non-vanishing property.

For the special case n = 1 and X = [a, b], we get the Weierstrass Approximation Theorem.

2. In particular, when $X = S^1 \subseteq \mathbb{R}^2$, we imply $\mathbb{R}[x, y]$ is dense in $\mathcal{C}(S^1)$.

5.2.1. Stone-Weierstrass Theorem in C

Consider the circle $S^1 \subseteq \mathbb{C}$ and the mappings

$$c: S^1 \to \mathbb{R}$$
 $s: S^1 \to \mathbb{R}$
with $e^{i\theta} \to \cos\theta$ with $e^{i\theta} \to \sin\theta$

are both continuous.

The algebra formed by s and c is given by

$$\mathcal{J} := \langle c, s \rangle = \operatorname{span} \{ \cos^m \theta \sin^n \theta \mid m, n \in \mathbb{N} \}$$

- 1. The \mathcal{J} satisfies both separating and non-vanishing property, which implies $\overline{\mathcal{J}} = \mathcal{C}(S^1).$
- 2. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a continuous, 2π -periodic mapping. It's easy to construct a continuous mapping $\tilde{f} : S^1 \to \mathbb{R}$ such that the diagram below commutes:

Or equivalently, $f(\theta) = \tilde{f}(e^{i\theta})$ for some $\tilde{f} \in \mathcal{C}(S^1)$. Since $\overline{\mathcal{J}} = \mathcal{C}(S^1)$, we can approximate $\tilde{f} \in \mathcal{C}(S^1)$ by $\langle \cos \theta, \sin \theta \rangle$, which implies that the $f(\theta)$ can be approximated

$$\sum_{m,n\in\mathbb{N}}a_{m,n}\cos^{m}\theta\sin^{n}\theta.$$

Since span{ $\cos^{m}\theta\sin^{n}\theta$ }_{*m,n*\in\mathbb{N}} = span{ $\cos(m\theta), \sin(n\theta), 1$ }_{*m,n*\in\mathbb{N}}, we imply $f(\theta)$ can be approximated by

$$\sum_{m,n\in\mathbb{N}}a_m\cos(m\theta)+b_n\sin(n\theta).$$

Or equivalently, for any $\varepsilon > 0$, there exists N > 0 and $a_m, a_n \in \mathbb{R}$ such that

$$\left| f(\theta) - \left(a_0 + \sum_{m=1}^N a_m \cos(m\theta) + \sum_{n=1}^N b_n \sin(n\theta) \right) \right| < \varepsilon, \quad \forall \theta \in [0, 2\pi].$$
 (5.1)

 \bigcirc The natural question is that do we have the following equation hold:

$$f(\theta) = a_0 + \sum_{m=1}^{\infty} a_m \cos(m\theta) + \sum_{n=1}^{\infty} b_n \sin(n\theta)$$
(5.2)

It seems that Eq.(5.2) above is equivalent to the expression in (5.1). However, unlike the Taylor expansion, the values of a_m , a_n , M, N may change once we switch the number $\varepsilon > 0$.

Therefore, Eq.(5.2) does not hold for most functions, but only for some functions with nice structure.

Fourier Analysis. Given the condition that the Eq.(5.2) holds. How can we get the values of a_m and b_n ? The way is to take "inner product" between $f(\theta)$ and trigonometric functions. For example, by taking the inner product with $\cos(k\theta)$ for Eq.(5.2) both sides, we have

$$\int_{-\pi}^{\pi} f(\theta) \cos(k\theta) d\theta = \frac{a_0}{2} \int_{-\pi}^{\pi} \cos(k\theta) d\theta + \sum_{m=1}^{\infty} a_m \int_{-\pi}^{\pi} \cos(m\theta) \cos(k\theta) d\theta + \sum_{m=1}^{\infty} b_n \int_{-\pi}^{\pi} \sin(n\theta) \cos(k\theta) d\theta = \pi \cdot a_k$$

by

Following the same trick, we obtain:

$$a_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos(k\theta) \, d\theta$$

$$b_{k} = \frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \sin(k\theta) \, d\theta$$
(5.3)

Naturally, we define the fourier expansion for general $f(\theta)$, even though we don't verify whether (5.2) holds or not:

$$g_N(\theta) = \frac{a_0}{2} + \sum_{n=1}^N a_m \cos(m\theta) + \sum_{n=1}^N b_n \sin(n\theta)$$

where the term a_m and b_n follow the definition in (5.3). The natural question is that whether $g_N(\theta) \rightarrow f(\theta)$ as $N \rightarrow \infty$?

5.2.2. Baire Category Theorem

Motivation. The set $\mathcal{P}[a,b] \subseteq \mathcal{C}[a,b]$ is dense by Weierstrass Approximation. However, it is not "abundant" in $\mathcal{C}[a,b]$, just like $\mathbb{Q} \subseteq \mathbb{R}$ is dense in \mathbb{R} . (Every $r \in \mathbb{R}$ is a limit of a sequence in \mathbb{Q})

The set \mathbb{Q} is countable yet $\mathbb{R} \setminus \mathbb{Q}$ is uncountable, i.e., there are many more holes in $\mathbb{R} \setminus \mathbb{Q}$.

Definition 5.2 [Nowhere Dense] A subset $S \subseteq (X,d)$ is nowhere dense if \overline{S} does not contain any open ball, i.e.,

 $X \setminus \overline{S}$ is dense in X

For example, a single point is nowhere dense.

Theorem 5.1 Let $\{E_i\}_{i=1}^{\infty}$ be a collection of nowhere dense sets in a complete metric space (X, d). Then the set

$$\bigcup_{i=1}^{\infty} \overline{E}$$

also does not contain any open ball.

Proof. I have no time to review and modify the proof during the lecture. Therefore, we encourage the reader to go through the proof in the note

W,Ni & J. Wang (January, 2019). Lecture Notes for MAT2006. Retrieved from https://walterbabyrudin.github.io/information/information.html

Of course, I will also add the proof in this note during this week.