
5.2. Monday for MAT3006
Our first quiz will be held on this Wednesday.

Reviewing. We have shown that the algebra A✓ C(X) with separation, non-vanishing

property implies A = C(X).

Now we show that if A = C(X), then the algebra A has separation, non-vanishing

property:

1. Suppose on the contrary that A is not separating, i.e., there exists x1, x2 2 X such

that f(x1) = f(x2), 8f 2A.

By the defintion of closure, it’s clear that for given S ✓ (X,d), 8x 2 S, there exists

a sequence {Sn} in S such that Sn ! x.

Construct f 2 C(X) defined by f (x) = d(x, x1). It follows that

f (x1) = 0, f (x2) = d(x2, x1) := k > 0

Now we claim that f /2A, since otherwise there exists {fn} in A such that fn ! f ,

i.e.,

fn(x1)! f (x1), fn(x2)! f (x2), fn(x1) = fn(x2),8n,

i.e., 0 = f (x1) = f (x2) > 0.

2. Suppose on the contrary that A is not non-vanishing, i.e., there exists some x0 2 X

such that f(x0) = 0,8f 2A. Construct g 2 C(X) defined by g(x) = d(x, x0) + 1.

Following the similar idea, we can show that there does not exist fn 2 A such

that fn ! g, i.e., g /2A, which is a contradiction.

⌅ Example 5.4 1. Let X ✓ R
n be a compact space. Then the polynomial ring

R[x1, . . . , xn] = {Polynomials in n variables with coefficients in R}

forms a dense set in C(X).

It’s clear that the set R[x1, . . . , xn] satisfies the separating and non-vanishing property.
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For the special case n = 1 and X = [a,b], we get the Weierstrass Approximation

Theorem.

2. In particular, when X = S1 ✓ R
2, we imply R[x,y] is dense in C(S1).

⌅

5.2.1. Stone-Weierstrass Theorem in C

Consider the circle S1 ✓ C and the mappings

c : S1 ! R

with eiq ! cosq

s : S1 ! R

with eiq ! sinq

are both continuous.

The algebra formed by s and c is given by

J := hc, si = span{cosm q sinn q | m,n 2 N}

1. The J satisfies both separating and non-vanishing property, which implies

J = C(S1).

2. Suppose f : R ! R is a continuous, 2p-periodic mapping. It’s easy to construct a

continuous mapping f̃ : S1 ! R such that the diagram below commutes:

Or equivalently, f (q) = f̃ (eiq) for some f̃ 2 C(S1). Since J = C(S1), we can approx-

imate f̃ 2 C(S1) by hcosq, sinqi, which implies that the f (q) can be approximated
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by

Â
m,n2N

am,n cosm q sinn q.

Since span{cosm q sinn q}m,n2N = span{cos(mq), sin(nq),1}m,n2N, we imply f (q)

can be approximated by

Â
m,n2N

am cos(mq) + bn sin(nq).

Or equivalently, for any # > 0, there exists N > 0 and am, an 2 R such that

����� f (q)�
 

a0 +
N

Â
m=1

am cos(mq) +
N

Â
n=1

bn sin(nq)

!����� < #, 8q 2 [0,2p]. (5.1)

R The natural question is that do we have the following equation hold:

f (q) = a0 +
•

Â
m=1

am cos(mq) +
•

Â
n=1

bn sin(nq) (5.2)

It seems that Eq.(5.2) above is equivalent to the expression in (5.1). However,

unlike the Taylor expansion, the values of am, an, M, N may change once we

switch the number # > 0.

Therefore, Eq.(5.2) does not hold for most functions, but only for some

functions with nice structure.

Fourier Analysis. Given the condition that the Eq.(5.2) holds. How can we get the

values of am and bn? The way is to take “inner product” between f (q) and trigonometric

functions. For example, by taking the inner product with cos(kq) for Eq.(5.2) both

sides, we have

Z p

�p
f (q)cos(kq)dq =

a0

2

Z p

�p
cos(kq)dq

+
•

Â
m=1

am

Z p

�p
cos(mq)cos(kq)dq +

•

Â
m=1

bn

Z p

�p
sin(nq)cos(kq)dq

= p · ak
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Following the same trick, we obtain:

ak =
1
p

Z p

�p
f (q)cos(kq)dq

bk =
1
p

Z p

�p
f (q)sin(kq)dq

(5.3)

Naturally, we define the fourier expansion for general f (q), even though we don’t

verify whether (5.2) holds or not:

gN(q) =
a0

2
+

N

Â
n=1

am cos(mq) +
N

Â
n=1

bn sin(nq),

where the term am and bn follow the definition in (5.3). The natural question is that

whether gN(q)! f (q) as N ! •?

5.2.2. Baire Category Theorem
Motivation. The set P [a,b]✓ C[a,b] is dense by Weierstrass Approximation. However,

it is not “abundant” in C[a,b], just like Q ✓ R is dense in R. (Every r 2 R is a limit of a

sequence in Q)

The set Q is countable yet R \ Q is uncountable, i.e., there are many more holes in

R \ Q.

Definition 5.2 [Nowhere Dense] A subset S ✓ (X,d) is nowhere dense if S does not

contain any open ball, i.e.,

X \ S is dense in X

⌅

For example, a single point is nowhere dense.

Theorem 5.1 Let {Ei}•
i=1 be a collection of nowhere dense sets in a complete metric

space (X,d). Then the set
•[

i=1
Ei
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also does not contain any open ball.

Proof. I have no time to review and modify the proof during the lecture. Therefore, we

encourage the reader to go through the proof in the note

W,Ni & J. Wang (January, 2019). Lecture Notes for MAT2006. Retrieved

from https://walterbabyrudin.github.io/information/information.html

Of course, I will also add the proof in this note during this week. ⌅
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