
4.5. Wednesday for MAT3006
The quiz will be held on Wednesday.

Reviewing. Let’s go through the proof for Weierstrass Theorem quickly.

• Study Qn(x) = cn(1� x2)n
and construct the approximate function

pn(x) =
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Therefore, kpn � f k•! 0 as n!•.

• Generalization for 8g 2 C[0,1]: Recall that we have assumed f (0) = f (1) = 0.

Now consider the general case, say

g(0) = a, g(1) = b.

Consider f (x) := g(x) � l(x), where l is the line segment from (0, a) to (1,b).

Then we imply | f (x)� pn(x)| < #, i.e.,

|g(x)� (pn(x) + l(x))| < #, 8x.

• Generlization for 8h 2 C[a,b]: Recall that we have restrict f is continuous on

[0,1]. For any h 2 C[a,b], define g(x) = h((b� a)x + a) for x 2 [0,1]. Therefore,
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g 2 C[0,1], i.e., |g(y)� pn(y)| < #,8y 2 [0,1], which implies

|h((b� a)y + a)� pn(y)| < #, 8y 2 [0,1]

Applying change of variables with x = (b� a)y + a, we imply

����h(x)� pn

✓
x� a
b� a

◆���� < #, 8x 2 [a,b],

where pn(·) is a polynomial function.

4.5.1. Stone-Weierstrass Theorem
The motivation is to generalize the Weierstrass approximation into the space C(X),

where (X,d) is a general compact space. Here C(X) := { f : X ! R is continuous}.

Note that

• C(X) has a norm:

k f k• := sup{ f (x) | x 2 X}

This is well-defined, since f (X) ✓R is compact, i.e., closed and bounded.

• (C(X),d•) is complete. The proof follows similarly from the proof that C[a,b] is

complete (see Example(??)).

R If X is not compact, then the norm k · k• is not well-defined on C(X), but

this norm is still well-defined on the space

Cb(X) = { f : X!R | f is continous and bounded}.

If X is compact, then C(X) = Cb(X).
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Definition 4.10 [Separation Property] Let (X,d) be any metric space, and A ✓ Cb(X)

is an algebra (closed under linear combination and pointwise product), then

1. A is said to be equipped with the separation property if for any x1 6= x2 2 X,

there exists f 2A such that f (x1) 6= f (x2)

2. A is said to be equipped with the nonvanishing property if for any x 2 X, there

exists f 2A such that f (x) 6= 0.

⌅

⌅ Example 4.4 Suppose that X := S1
:= {eiq | q 2 [0,2p]} ✓ C ⇠= R

2
, and consider the

algebra

A = hgi := span{1, g, g2
, . . .}

Define g : S1!R as g(eiq) = cosq. Note that

1. A does not satisfy the separation property: take eiq
, ei(2p�q)

2. However, A satisfies the nonvanishing property. Consider the special element of A:

f ⌘ 1.

⌅

Theorem 4.4 — Stone-Weierstrass Theorem. Let (X,d) be a compact space, and

A ✓ C(X) is an algebra. Then A = C(X) iff A satisfies both the nonvanishing and

separation property.

Before going through the proof, we establish two lemmas below:

Proposition 4.12 If both f , g belong to the algebra A, then max{ f , g} 2 A and

min{ f , g} 2A.

Proof. Since

max{ f , g} = 1

2
( f + g) +

1

2
| f � g|

min{ f , g} = 1

2
( f + g)� 1

2
| f � g|,
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it suffices to show |h| 2A given that h 2A.

Let M = max{|h(x)| | x 2 X}. Consider the function (w.r.t. t) |t| 2 C[�M, M]. By

Weierstrass approximation, there exists a polynomial p such that ||t|� p(t)|< #, which

implies

||h(x)|� p(h(t))| < #.

Note that p(h(t)) is a polynomial of h(t), and therefore an element from the algebra A.

Therefore, |h| can be approximated by some element from A, i.e., |h| 2A. ⌅

Proposition 4.13 Let A ✓ C(X) be an algebra satisfying the separation property and

non-vanishing property. Then for all x1 6= x2 2 X, and any a, b 2R, there exists f 2A

such that 8
><

>:

f (x1) = a

f (x2) = b

Proof. By separation property, there exists h 2A such that h(x1) 6= h(x2).

1. We claim that we can construct a new h such that

h(x1) 6= h(x2), h(x1) 6= 0, h(x2) 6= 0 (4.5)

(a) If both h(x1), h(x2) 6= 0, we have done.

(b) If not, suppose h(x1) = 0. By non-vanishing property, there eixsts p 2 A

such that p(x1) 6= 0. Then some linear transformation of h and p will do the

trick. (hint: construct t such that h h + t · p gives the desired result.)

2. Now suppose the requirement (4.5) is met. Consider the function

f (x) = ah(x) + bh2(x) 2A,

where a,b are two parameters to be determined.

Indeed, it suffices to find a,b such that f (x1) = a, f (x2) = b, or equivalently, solve
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the linear system

f (x1) = ah(x1) + bh2(x1) = a

f (x2) = ah(x2) + bh2(x2) = b

Since the determinant of the linear system is not equal to 0, a,b can be clearly

found.

The proof is complete. ⌅

Necessity part of the proof. Given that A has separation and non-vanishing, we aim to

show A = C(X).

1. Take any f 2 C(X). By proposition (4.13), for any x,y 2 X, there exists fx,y 2A

such that 8
><

>:

fx,y(x) = f (x)

fx,y(y) = f (y)
.

Construct the open set Ux,y = ( f � fx,y)�1((�#, #)), i.e.,

Ux,y = {t 2 X | fx,y(t)� # < f (t) < fx,y(t) + #}.

2. It’s clear that x,y 2Ux,y. For fixed y 2 X, the collection {Ux,y}x2X forms an open

cover of X. By the compactness of X, there exists the finite subcover

{Ux1,y, . . . ,UxN ,y} ◆ X.

By proposition (4.12), the function fy := max{fx1,y, . . . ,fxN ,y} 2A. Furthermore,

for 8x 2 X, we imply there exists some Uxi ,y 3 x, i.e.,

f (x) < fxi ,y(x) + # =) f (x) < fy(x) + #, 8x 2 X.

3. Also, consider Vy = \N
i=1

Uxi ,y, which is the open set containing y, and {Vy}y2X
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covers X (why?). Note that for any x 2 Vy, we imply x 2Uxi ,y,8i, i.e.,

fxi ,y(x)� # < f (x), 8i =) fy(x)� # < f (x), 8x 2 Vy.

By the compactness of X again, we take finite subcover {Vyj}M
j=1

and define

f(x) := min{fy1
(x), . . . ,fyM(x)} 2A.

Therefore, for any x 2 X we imply x 2 Vym , i.e.,

fym(x)� # < f (x) =) f(x)� # < f (x) (4.6)

4. Also, from (2) we have obtained f (x) < fy(x) + # for 8y 2 X. In particular,

f (x) < fym(x) + #, 8m = 1, . . . , M (4.7)

Combining (4.6) and (4.7), we imply |f(x)� f (x)| < #.

Therefore, we have constructed a function f 2 A such that |f(x)� f (x)| < #, which

implies f 2A =A. The proof is complete. ⌅
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