4.5. Wednesday for MAT 3006

The quiz will be held on Wednesday.

Reviewing. Let’s go through the proof for Weierstrass Theorem quickly.

e Study Q,(x) = ¢, (1 — x?)" and construct the approximate function
/ Qu(t)f(x+1t)d
e Show that
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<4AMVn(1— 84" +e
Therefore, ||py — fl|lec — 0 as n — co.
e Generalization for Vg € C[0,1]: Recall that we have assumed f(0) = f(1) =0.

Now consider the general case, say

g(0)=a, g(1)=0.

Consider f(x) := g(x) —I(x), where [ is the line segment from (0,a) to (1,b).

Then we imply |f(x) — pa(x)| <¢, ie.,
g(x) = (pn(x) +1(x))| <&, Vx.

e Generlization for Vh € C[a,b]: Recall that we have restrict f is continuous on
[0,1]. For any h € C[a,b], define g(x) = h((b — a)x + a) for x € [0,1]. Therefore,
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¢ €C[0,1],1e., |g(y) — pu(y)| <& Vy € [0,1], which implies
(b —a)y +a) = pu(y)| <&, Vy€[01]

Applying change of variables with x = (b — a)y + a, we imply

‘h(x) — Pn (g:Z)‘ <eg Vxé€lab],

where p,(-) is a polynomial function.

4.5.1. Stone-Weierstrass Theorem

The motivation is to generalize the Weierstrass approximation into the space C(X),

where (X,d) is a general compact space. Here C(X) := {f : X — R is continuous}.

Note that

e C(X) has a norm:
| flleo := sup{f(x) | x € X}

This is well-defined, since f(X) C R is compact, i.e., closed and bounded.

e (C(X),d) is complete. The proof follows similarly from the proof that C|a, b] is

complete (see Example(??)).

r) If X is not compact, then the norm || - ||« is not well-defined on C(X), but

this norm is still well-defined on the space

Cp(X) ={f: X —= R f is continous and bounded }.

If X is compact, then C(X) = Cp(X).
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Definition 4.10 [Separation Property] Let (X,d) be any metric space, and A C Cp(X)

is an algebra (closed under linear combination and pointwise product), then

1. A is said to be equipped with the separation property if for any x; # x; € X,
there exists f € A such that f(x1) # f(x2)

2. A is said to be equipped with the nonvanishing property if for any x € X, there
exists f € A such that f(x) # 0.

m Example 4.4 Suppose that X := S!:= {¢® | § € [0,271]} C C 2 R?, and consider the
algebra
A= (g):=span{l,g,¢%...}

Define ¢: S' — R as g(e'?) = cosf. Note that
1. A does not satisfy the separation property: take e',¢t(27—0)

2. However, A satisfies the nonvanishing property. Consider the special element of A:

f=1

Theorem 4.4 — Stone-Weierstrass Theorem. Let (X,d) be a compact space, and

A C C(X) is an algebra. Then A = C(X) iff A satisfies both the nonvanishing and

separation property.

Before going through the proof, we establish two lemmas below:

Proposition 4.12 If both f,g belong to the algebra A, then max{f,g} € A and
min{f,g} € A.

Proof. Since

max{f,g} = %(f+g) + %If — 8l

min{f,g} = %(f+g) - %If — 8l
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it suffices to show || € A given that i € A.

Let M = max{|h(x)| | x € X}. Consider the function (w.r.t. f) |t| € C[-M, M]. By
Weierstrass approximation, there exists a polynomial p such that ||t| — p(t)| < ¢, which
implies

()| = p(h(1))] <e.

Note that p(h(t)) is a polynomial of h(t), and therefore an element from the algebra A.

Therefore, |l| can be approximated by some element from A4, i.e., |i| € A. ]

Proposition 4.13  Let A C C(X) be an algebra satisfying the separation property and
non-vanishing property. Then for all x; # x, € X, and any «, € IR, there exists f € A

such that

f(x1) =w
flx2) =8

Proof. By separation property, there exists 1 € A such that h(x1) # h(x2).

1. We claim that we can construct a new h such that

h(x1) #h(x2), h(x1) #0, h(xz) #0 (4.5)

(a) If both h(x1),h(x2) # 0, we have done.
(b) If not, suppose h(x1) = 0. By non-vanishing property, there eixsts p € A
such that p(x1) # 0. Then some linear transformation of  and p will do the

trick. (hint: construct t such that & <— h +t - p gives the desired result.)

2. Now suppose the requirement (4.5) is met. Consider the function

f(x) = ah(x) +bh*(x) € A,

where a,b are two parameters to be determined.

Indeed, it suffices to find a,b such that f(x1) = «, f(x2) = B, or equivalently, solve
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the linear system

f(x1) = ah(xy) + bh*(x1) = o

f(x2) = ah(xz) + bh*(x2) = B

Since the determinant of the linear system is not equal to 0, a,b can be clearly

found.

The proof is complete. ]

Necessity part of the proof. Given that A has separation and non-vanishing, we aim to

show A = C(X).

1. Take any f € C(X). By proposition (4.13), for any x,y € X, there exists ¢, € A

such that

‘Px,y(x) = f(x)
(ery(y) =f(y)

Construct the open set Uy, = (f — ¢xy) " 1((—¢,€)), ie.,

Uy ={t € X | Pry(t) —e < f(t) < Pry(t) + €}

2. It’s clear that x,y € U,,,. For fixed y € X, the collection {Uy }+ex forms an open

cover of X. By the compactness of X, there exists the finite subcover
{u_xl,y,. . .,UXN’y} :_) X.

By proposition (4.12), the function ¢, := max{¢x, y, ..., $xyy} € A. Furthermore,

for Vx € X, we imply there exists some Uyy 2 x, ie.,
f(x) < ry(x) +e = f(x) <¢y(x) +¢ VxeX.

3. Also, consider V;, = ﬂfi 1Ux,y, which is the open set containing y, and {Vy}ye X
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covers X (why?). Note that for any x € Vy, we imply x € Uy, ,, Vi, ie.,
Pry(X) —e< f(x), Vi= ¢p,(x) —e<f(x), Vx €V,
By the compactness of X again, we take finite subcover {Vy/}jj\i ; and define
¢(x) :=min{¢y, (x),..., ¢y, (x)} € A.

Therefore, for any x € X we imply x €V, i.e,,

Py () —e < f(x) = ¢(x) —e < f(x) (4.6)

4. Also, from (2) we have obtained f(x) < ¢, (x) + € for Vy € X. In particular,
f(x) <¢y,(x)+e Vm=1,....M 4.7)

Combining (4.6) and (4.7), we imply |$(x) — f(x)| <e.

Therefore, we have constructed a function ¢ € A such that |¢(x) — f(x)| < &, which

implies f € A=A The proof is complete. |
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