
4.2. Monday for MAT3006
Our first quiz will be held on next Wednesday.

Reviewing.

• Picard Lindelof Theorem on ODEs. e.g., consider

8
>><

>>:

dy
dx

=
x

1 � y
, (x,y) 2 G := (�•,•)⇥ (�•,1)

y(0) = 2

Since f 2 C1(G) satisfies the Lipschitz condition on some closed ball of the point

(x0,y0), the setting for Picard Lindelof Theorem is satisfied, and the solution is

uniquely given by:

y = 1 +
p

1 � x2, �1 < x < 1.

Therefore, the maximal interval of existence is given by (�1,1). In order to restrict

G to be open to construct a closed ball of (x0,y0), we need the initial condition

y(0) 6= 1.

4.2.1. Generalization into System of ODEs

Formal Setting of System of ODEs. Consider the system of ODEs

8
>>>>><

>>>>>:

y01(x) = f1(x,y1(x), . . . ,yn(x))

...

y0n(x) = fn(x,y1(x), . . . ,yn(x))

8
>>>>><

>>>>>:

y1(a) = b1

...

yn(x) = bn

It’s convenient to denote

yyy(x) =

0

BBBB@

y1(x)
...

yn(x)

1

CCCCA
2 C(R,Rn), fff (x,yyy) =

0

BBBB@

f1(x,yyy)
...

fn(x,yyy)

1

CCCCA
, bbb :=

0

BBBB@

b1
...

bn

1

CCCCA
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Here the notation C(X,Y) denotes the set of bounded continuous mapping from X to

Y. Therefore we can express the system of ODE as a compact form:

8
><

>:

yyy0 = fff (x,yyy)

yyy(a) = bbb

Generalization of Picard Lindelof Theorem. Consider the rectangle

S = {(xxx,yyy) 2 R ⇥ R
n | a � a  x  a + a, bi � bi  yi  bi + bi, i = 1, . . . ,n}

Suppose that

• k fff (x,yyy)k  M,8(x,yyy) 2 S

• k fff (x,yyy)� fff (x,yyy0)k  L · kyyy � yyy0k for 8x 2 [a � a,a + a]

Then consider the complete metric space

X = {yyy 2 C([a � a,a + a],Rn) | bi � bi  yi(x)  bi + bi}

(Verification of completeness: if Y is complete, then C(X,Y) is complete.) Under this

setting, the similar argument gives the Picard-Lindelof for system of ODEs.

Higher Order ODEs. Note that there is a standard way to transform the ODE with

higher order derivatives into a system of first order ODEs. Suppose we want to solve

the initival value problem

8
><

>:

y(m) = f (x,y,y0, . . . ,y(m�1))

y(a) = b0, y0(a) = b1, . . . ,y(m�1)(a) = bm�1
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We can define the variables

0

BBBBBBB@

ym�1(x)
...

y1(x)

y0(x)

1

CCCCCCCA

=

0

BBBBBBB@

y(m�1)(x)
...

y0(x)

y(x)

1

CCCCCCCA

which gives an equivalent system of ODE:

8
>>>>>>>>><

>>>>>>>>>:

y0m�1 = f (x,y0, . . . ,ym�1)

y0m�2 = ym�1

...

y00 = y1

, with

8
>>>>>>>>><

>>>>>>>>>:

ym�1(a) = bm�1

ym�2(a) = bm�2

...

y0(a) = b0

4.2.2. Stone-Weierstrass Theorem

Under the compact metric space X, the goal is to approximate any functions in C(X).

For example, under X = [a,b], one can apply Taylor polynomials pn(x) to approximate

differentiable functions:

k f (x)� pn(x)k• < #, for large n.

To formally describe the phenomenon for the approximation of any functions in C(X),

we need to describe the set of approximate functions, which usually obtains a common

property:

Definition 4.3 [Algebra] A subset A✓ C(X) (where X is a general space) is an algebra

if the following holds:

• If f1, f2 2A, then a f1 + b f2 2A

• If f1, f2 2A, then f1 · f2 2A

⌅
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⌅ Example 4.1 1. A = C(X) is an algebra.

2. X = [a,b], then A = P[a,b] = {All polynomials p(x)} is an algebra.

⌅

The goal is to approximate any f 2 C(X) by p 2A, i.e., for 8 f 2 C(X), there exists

p 2A such that

k f � pk• < #, 8# > 0.

In other words, we aim to find an algebra A ✓ C(X) such that A = C(X), i.e., A is

dense in C(X).

Theorem 4.2 — Weierstrass Approximation. P [a,b] is dense in C[a,b].

Proof. Consider any function f 2 C[0,1]. By rescaling, assume that f 2 C[0,1]. By

subtracting a linear function `(x), assume that f (0) = f (1) = 0. Then we extend f (x)

into R by setting f (x) = 0,8x /2 [0,1].

• Step 1: Construction of approximate function: Consider the Landaus kernel

function

Qn(x) =

8
><

>:

cn · (1 � x2)n, � 1  x  1

0, |x| > 1

where cn is chosen such that
R

Qn(x)dx = 1. Then construct the approximation

of f by defining

pn(x) := Qn ⇤ f =
Z 1

�1
f (x + t)Qn(t)dt

The intuition behind this construction is that as n ! •, Qn(x)! d(x), where

d(x) =

8
><

>:

•, x = 0

0, x 6= 0
=)

Z 1

�1
f (x + t)d(t)dt = f (x).
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Step 2: Argue that pn(x) 2 P [a,b]: Now it’s clear that

pn(x) =
Z 1

�1
f (x + t)Qn(t)dt (4.2a)

=
Z 1�x

�x
f (x + t)Qn(t)dt (4.2b)

=
Z 1

�1
f (u) · Qn(u � x)du (4.2c)

=
Z 1

�1
f (u) · (1 � (u � x)2)n du, (4.2d)

where (4.2b) is because that f = 0, for x /2 [0,1] and Qn = 0 for |x|> 1; (4.2c) is by

change of variables; and (4.2d) is by substitution of Qn(x). Therefore, pn is still a

polynomial of x.

• Step 3: Construct an upper bound on cn: It’s clear that

c�1
n =

Z 1

�1
(1 � x2)n dx

= 2
Z 1

0
(1 � x2)n dx

� 2
Z 1

0
(1 � nx2)dx

� 2
Z 1/

p
n

0
(1 � nx2)dx

= 2(
1p
n
� 1

3
p

n
) >

1p
n

and therefore cn <
p

n. As a result, for any fixed d 2 (0,1), we imply

Qn(x) 
p

n(1 � d2)n, 8x 2 [d,1],

which implies Qn(x)! 0 uniformly on [d,1].

• Step 4: Show that kpn � f k• ! 0. Since f is continuous, for given # > 0, there

exists d 2 (0,1) such that

| f (x)� f (y)| < #, when |x � y| < d, x,y 2 [0,1].
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Therefore, for any x 2 [0,1], and for sufficiently large n,

|pn(x)� f (x)| =
����
Z 1

�1
f (x + t)Qn(t)�

Z 1

�1
f (x)Qn(t)dt

���� (4.3a)


Z 1

�1
| f (x + t)� f (x)|Qn(t)dt (4.3b)

 2M
Z �d

�1
Qn(t)dt +

#

2

Z d

�d
Qn(t)dt + 2M

Z 1

d
Qn(t)dt (4.3c)

 4M
p

n(1 � d2)n +
#

2
(4.3d)

 # (4.3e)

where (4.3c) is by separating the integrand into three parts, and then upper

bounding | f (x + t)� f (x)| by 2M := 2supx | f (x)| for the integrand t 2 [�1,d) [

(d,1], and upper bounding | f (x + t) � f (x)| by #
2 due to the continuity of f

for the integrand t 2 [d,d]; (4.3e) is by choosing n sufficiently enough to make

4M
p

n(1 � d2)n sufficiently small.

Therefore kpn � f k• = maxx2[0,1] |pn(x) � f (x)| < # for large n. The proof is

complete.

⌅
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