
3.5. Wednesday for MAT3006

3.5.1. Remarks on Contraction

Reviewing.

• Suppose E ✓ X with X being complete, then E is closed in X iff E is complete

• Suppose E ✓ X, then E is closed in X if E is complete.

• Contraction Mapping Theorem

• Classification for the Convergence of Newton’s method: the Newton’s method

aims to find the fixed point of T.

T : R ! R, T(x) = x � f (x)
f 00(x)

In the last lecture we claim that there exists [r� #,r+ #] such that sup[r�#,r+#] |T0(x)|<

1.

Note that we doesn’t make our statement rigorous enough. we need to further-

more show that T(X) ✓ X:

– T : [r � #,r + #]! [r � #,r + #], since

|T(x)� r| = |T(x)� T(r)| = |T0(s)||x � r|  sup
[r�#,r+#]

|T0(s)||x � r| < |x � r|

Therefore, if x 2 [r � #,r + #], then T(x) 2 [r � #,r + #].

– T is a contraction:

|T(x)� T(y)| < t · |x � y|

Therefore, applying contraction mapping theorem gives the desired result.
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3.5.2. Picard-Lindelof Theorem

Consider solving the the initival value problem given below

8
><

>:

dy
dx

= f (x,y)

y(a) = b

=) y(x) = b +
Z x

a
f (t,y(t))dt (3.11)

Definition 3.5 Let R = [a � a,a + a]⇥ [b � b, b + b]. Then the function f (x,y) satisfies

the Lipschitz condition on R if there exists L > 0 such that

| f (x,y1)� f (x,y2)| < L · |y1 � y2|, 8(x,yi) 2 R (3.12)

The smallest number L⇤ = inf{L | The relation (3.12) holds for L} is called the Lipschitz

constant for f . ⌅

⌅ Example 3.11 A C1-function f(x,y) in a rectangle automatically satisfies the Lipschitz

condition:

f (x,y1)� f (x,y2)
Appling MVT

=
∂ f
∂y

(x, ỹ)(y1 � y2)

Since ∂ f
∂y is continuous on R and thus bounded, we imply

| f (x,y1)� f (x,y2)| < L · |y1 � y2|, 8(x,yi) 2 R

where

L = max
⇢

abs
✓

∂ f
∂y

◆����(x,y) 2 R
�

⌅

Theorem 3.4 — Picard-Lindelof Theorem (existence part). Suppose f 2 C(R) be such

that f satisfies the Lipschitz condition, then there exists a00 2 (0, a] such that (??) is

solvable with y(x) 2 C([a � a00,a + a00]).
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Proof. Consider the complete metric space

X = {y(x) 2 C([a � a,a + a]) | b � b  y(x)  b + b},

with the mapping T : X ! X defined as

(Ty)(x) = b +
Z x

a
f (t,y(t))dt

It suffices to show that T is a contraction, but here we need to estrict a a smaller

number as follows:

1. Well-definedness of T: Take M := sup{ f (x,y) | (x,y) 2 R} and construct a0 =

min{b/M, a}. Consider the complete matric space

X = {y(x) 2 C([a � a0,a + a0]) | b � b  y(x)  b + b}

which implies that

|(Ty)(x)� b| 
����
Z x

a
f (t,y(t))dt

����  M|x � a|  Ma0  b,

i.e., T(X) ✓ X, and therefore T : X ! X is well-defined.

2. Contraction for T: Construct a00 2 min{a0, 1
2L⇤ }, where L⇤ is the Lipschitz constant

for f . and consider the complete metric space

X = {y(x) 2 C([a � a00,a + a00]) | b � b  y(x)  b + b}

Therefore for 8x 2 [a � a00,a + a00] and the mapping T : X ! X,

|[T(y1)� T(y2)](x)| 
����
Z x

a
[ f (t,y2(t))� f (t,y1(t))]dt

����


Z x

a
| f (t,y2)� f (t,y1)|dt 

Z x

a
L⇤|y2(t)� y1(t)|dt

 L⇤|x � a|sup |y2(t)� y1(t)|  L⇤a00d•(y2,y1) 
1
2

d•(y2,y1)
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Therefore, we imply d•(Ty2, Ty1)  1
2 d•(y2,y1), i.e., T is a contraction.

Applying contraction mapping theorem, there exists y(x) 2 X such that Ty = y, i.e.,

y = b +
Z x

a
f (t,y(t))dt

Thus y is a solution for the IVP (3.11). ⌅

R On [a � a00,a + a00], we can solve the IVP (3.11) by recursively applying T:

y0(x) = b, 8x 2 [a � a00,a + a00]

y1 = T(y0) = b +
Z x

a
f (t, b)dt

y2 = T(y1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

By studying (3.11) on different rectangles, we are able to show the uniqueness of

our solution:

Proposition 3.8 Suppose f satisfies the Lipschitz conditon, and y1,y2 are two solutions

of (3.11), where y1 is defined on x 2 I1, and y2 is defined on x 2 I2. Suppose I1 \ I2 6= ∆

and y1,y2 share the same initial value condition y(a) = b. Then y1(x) = y2(x) on I1 \ I2.

Proof. Suppose I1 \ I2 = [p,q] and let z := sup{x | y1 ⌘ y2 on [a, x]}. It suffices to show

z = q. Now suppose on the contrary that z < q, and consider the subtraction |y1 � y2|:

yi = b +
Z x

a
f (t,yi)dt =) |y1 � y2| =

����
Z x

z
f (t,y1)� f (t,y2)dt

���� .

Construct an interval I⇤ = [z� 1
2L⇤ ,z+ 1

2L⇤ ]\ [p,q], and let xm = argmaxx2I⇤ |y1(x)�
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y2(x)|, which implies for 8x 2 I⇤,

|y1(x)� y2(x)| =
����
Z x

z
f (t,y1)� f (t,y2)dt

����


Z x

z
| f (t,y1(t))� f (t,y2(t))|dt

 L⇤
Z x

z
|y1(x)� y2(x)|dt

 L⇤|x � z||y1(xm)� y2(xm)|

 1
2
|y1(xm)� y2(xm)|.

Taking x = xm, we imply y1 ⌘ y2 for 8x 2 I⇤, which contradicts the maximality of z. ⌅

Combining Theorem (3.4) and proposition (3.8), we imply the existence of a unique

“maximal” solution for the IVP (3.11), i.e., the unique solution is defined on a maximal

interval.

Corollary 3.3 Let U ✓ R
2 be an open set such that f (x,y) satisfies the Lipschitz

condition for any [a,b]⇥ [c,d] ✓ U, then there exists xm and xM in R such that

• The IVP (3.11) admits a solution y(x) for x 2 (xm, xM), and if y⇤ is another solution

of (3.11) on some interval I ✓ (xm, xM), then y ⌘ y⇤ on I.

• Therefore y(x) is maximally defined; and y(x) is unique.

⌅ Example 3.12 Consider the IVP

8
><

>:

dy
dx

= x2y1/5

y(0) = C
=) ∂ f

∂y
=

x2

5y4/5 .

• Taking U = R ⇥ (0,•) implies y =
⇣

4x3

15 + c4/5
⌘5/4

, defined on ( 3
p
�15/4c4/5,•).

• When c = 0, f (x,y) does not satisfy the Lipschitz condition. The uniqueness of

solution does not hold.

⌅
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