3.5. Wednesday for MAT3006

3.5.1. Remarks on Contraction

Reviewing.

- Suppose $E \subseteq X$ with X being complete, then E is closed in X iff E is complete
- Suppose $E \subseteq X$, then *E* is closed in *X* if *E* is complete.
- Contraction Mapping Theorem
- Classification for the Convergence of Newton's method: the Newton's method aims to find the fixed point of *T*.

$$T: \mathbb{R} \to \mathbb{R}, \quad T(x) = x - \frac{f(x)}{f''(x)}$$

In the last lecture we claim that there exists $[r - \varepsilon, r + \varepsilon]$ such that $\sup_{[r-\varepsilon, r+\varepsilon]} |T'(x)| < 1$.

Note that we doesn't make our statement rigorous enough. we need to furthermore show that $T(X) \subseteq X$:

-
$$T: [r - \varepsilon, r + \varepsilon] \rightarrow [r - \varepsilon, r + \varepsilon]$$
, since
 $|T(x) - r| = |T(x) - T(r)| = |T'(s)||x - r| \le \sup_{[r - \varepsilon, r + \varepsilon]} |T'(s)||x - r| < |x - r|$
Therefore, if $x \in [r - \varepsilon, r + \varepsilon]$, then $T(x) \in [r - \varepsilon, r + \varepsilon]$.

– *T* is a contraction:

$$|T(x) - T(y)| < \tau \cdot |x - y|$$

Therefore, applying contraction mapping theorem gives the desired result.

3.5.2. Picard-Lindelof Theorem

Consider solving the the initival value problem given below

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = f(x,y) \\ y(\alpha) = \beta \end{cases} \implies y(x) = \beta + \int_{\alpha}^{x} f(t,y(t)) \,\mathrm{d}t \tag{3.11}$$

Definition 3.5 Let $R = [\alpha - a, \alpha + a] \times [\beta - b, \beta + b]$. Then the function f(x, y) satisfies the Lipschitz condition on R if there exists L > 0 such that

$$|f(x,y_1) - f(x,y_2)| < L \cdot |y_1 - y_2|, \quad \forall (x,y_i) \in R$$
(3.12)

The smallest number $L^* = \inf\{L \mid \text{The relation (3.12) holds for } L\}$ is called the **Lipschitz** constant for f.

• Example 3.11 A C^1 -function f(x,y) in a rectangle automatically satisfies the Lipschitz condition:

$$f(x,y_1) - f(x,y_2) \stackrel{\text{Appling MVT}}{=} \frac{\partial f}{\partial y}(x,\tilde{y})(y_1 - y_2)$$

Since $\frac{\partial f}{\partial y}$ is continuous on R and thus bounded, we imply

$$|f(x,y_1) - f(x,y_2)| < L \cdot |y_1 - y_2|, \quad \forall (x,y_i) \in R$$

where

$$L = \max\left\{ \operatorname{abs}\left(\frac{\partial f}{\partial y}\right) \middle| (x, y) \in R \right\}$$

Theorem 3.4 — **Picard-Lindelof Theorem (existence part).** Suppose $f \in C(R)$ be such that f satisfies the Lipschitz condition, then there exists $a'' \in (0, a]$ such that (??) is solvable with $y(x) \in C([\alpha - a'', \alpha + a''])$.

Proof. Consider the complete metric space

$$X = \{y(x) \in \mathcal{C}([\alpha - a, \alpha + a]) \mid \beta - b \le y(x) \le \beta + b\},\$$

with the mapping $T: X \to X$ defined as

$$(Ty)(x) = \beta + \int_{\alpha}^{x} f(t, y(t)) dt$$

It suffices to show that *T* is a contraction, but here we need to estrict *a* a smaller number as follows:

Well-definedness of *T*: Take *M* := sup{*f*(*x*,*y*) | (*x*,*y*) ∈ *R*} and construct *a*' = min{*b*/*M*,*a*}. Consider the complete matric space

$$X = \{y(x) \in \mathcal{C}([\alpha - a', \alpha + a']) \mid \beta - b \le y(x) \le \beta + b\}$$

which implies that

$$|(Ty)(x) - \beta| \le \left| \int_{\alpha}^{x} f(t, y(t)) \, \mathrm{d}t \right| \le M |x - \alpha| \le M a' \le b,$$

i.e., $T(X) \subseteq X$, and therefore $T: X \to X$ is well-defined.

Contraction for *T*: Construct a'' ∈ min{a', 1/2L*}, where L* is the Lipschitz constant for *f*. and consider the complete metric space

$$X = \{y(x) \in \mathcal{C}([\alpha - a'', \alpha + a'']) \mid \beta - b \le y(x) \le \beta + b\}$$

Therefore for $\forall x \in [\alpha - a'', \alpha + a'']$ and the mapping $T: X \to X$,

$$|[T(y_1) - T(y_2)](x)| \le \left| \int_{\alpha}^{x} [f(t, y_2(t)) - f(t, y_1(t))] dt \right|$$

$$\le \int_{\alpha}^{x} |f(t, y_2) - f(t, y_1)| dt \le \int_{\alpha}^{x} L^* |y_2(t) - y_1(t)| dt$$

$$\le L^* |x - \alpha| \sup |y_2(t) - y_1(t)| \le L^* a'' d_{\infty}(y_2, y_1) \le \frac{1}{2} d_{\infty}(y_2, y_1)$$

Therefore, we imply $d_{\infty}(Ty_2, Ty_1) \leq \frac{1}{2}d_{\infty}(y_2, y_1)$, i.e., *T* is a contraction.

Applying contraction mapping theorem, there exists $y(x) \in X$ such that Ty = y, i.e.,

$$y = \beta + \int_{\alpha}^{x} f(t, y(t)) \, \mathrm{d}t$$

Thus y is a solution for the IVP (3.11).

(R) On $[\alpha - a'', \alpha + a'']$, we can solve the IVP (3.11) by recursively applying *T*:

$$y_0(x) = \beta, \qquad \forall x \in [\alpha - a'', \alpha + a'']$$
$$y_1 = T(y_0) = \beta + \int_{\alpha}^{x} f(t, \beta) dt$$
$$y_2 = T(y_1)$$

By studying (3.11) on different rectangles, we are able to show the uniqueness of our solution:

Proposition 3.8 Suppose *f* satisfies the Lipschitz conditon, and y_1, y_2 are two solutions of (3.11), where y_1 is defined on $x \in I_1$, and y_2 is defined on $x \in I_2$. Suppose $I_1 \cap I_2 \neq \emptyset$ and y_1, y_2 share the same initial value condition $y(\alpha) = \beta$. Then $y_1(x) = y_2(x)$ on $I_1 \cap I_2$.

Proof. Suppose $I_1 \cap I_2 = [p,q]$ and let $z := \sup\{x \mid y_1 \equiv y_2 \text{ on } [\alpha, x]\}$. It suffices to show z = q. Now suppose on the contrary that z < q, and consider the subtraction $|y_1 - y_2|$:

$$y_i = \beta + \int_{\alpha}^{x} f(t, y_i) dt \implies |y_1 - y_2| = \left| \int_{z}^{x} f(t, y_1) - f(t, y_2) dt \right|.$$

Construct an interval $I^* = [z - \frac{1}{2L^*}, z + \frac{1}{2L^*}] \cap [p,q]$, and let $x_m = \arg \max_{x \in I^*} |y_1(x) - y_1(x)|$

 $y_2(x)$, which implies for $\forall x \in I^*$,

$$\begin{aligned} |y_1(x) - y_2(x)| &= \left| \int_z^x f(t, y_1) - f(t, y_2) \, dt \right| \\ &\leq \int_z^x |f(t, y_1(t)) - f(t, y_2(t))| \, dt \\ &\leq L^* \int_z^x |y_1(x) - y_2(x)| \, dt \\ &\leq L^* |x - z| |y_1(x_m) - y_2(x_m)| \\ &\leq \frac{1}{2} |y_1(x_m) - y_2(x_m)|. \end{aligned}$$

Taking $x = x_m$, we imply $y_1 \equiv y_2$ for $\forall x \in I^*$, which contradicts the maximality of *z*.

Combining Theorem (3.4) and proposition (3.8), we imply the existence of a unique "maximal" solution for the IVP (3.11), i.e., the unique solution is defined on a maximal interval.

Corollary 3.3 Let $U \subseteq \mathbb{R}^2$ be an open set such that f(x,y) satisfies the Lipschitz condition for any $[a,b] \times [c,d] \subseteq U$, then there exists x_m and x_M in $\overline{\mathbb{R}}$ such that

- The IVP (3.11) admits a solution y(x) for $x \in (x_m, x_M)$, and if y^* is another solution of (3.11) on some interval $I \subseteq (x_m, x_M)$, then $y \equiv y^*$ on I.
- Therefore y(x) is maximally defined; and y(x) is unique.

Example 3.12 Consider the IVP

$$\begin{cases} \frac{\mathrm{d}y}{\mathrm{d}x} = x^2 y^{1/5} \\ y(0) = C \end{cases} \implies \frac{\partial f}{\partial y} = \frac{x^2}{5y^{4/5}}. \end{cases}$$

- Taking $U = \mathbb{R} \times (0, \infty)$ implies $y = \left(\frac{4x^3}{15} + c^{4/5}\right)^{5/4}$, defined on $(\sqrt[3]{-15/4c^{4/5}}, \infty)$.
- When c = 0, f(x,y) does not satisfy the Lipschitz condition. The uniqueness of solution does not hold.